ELEKTRIK, VOL.1, NO.1, February 1993, ©@ TUBITAK EMO

Design of Interruptible Electric Power Service

Contracts With Stochastic Demand

Chin-Woo Tan, Takashi Ishikida, and Pravin Varaiya
Department of Electrical Engineering & Computer Sciences
University of California Berkeley, CA 94720

Abstract

Electric energy tariffs based on fized prices cause a gap between real-time marginal costs and marginal
values and therefore are inefficient in this sense. Spot pricing is a scheme that overcomes this inefficiency.
However, without a dense communication structure, spot pricing is impractical to implement. Instead, a
new scheme called ”Interruptible Service Contracts” is proposed, based on future prices formulated in terms
of contracts that take into account possible service interruptions in case of contingencies. It is shoun that
welfare mazimizing prices that respect individual contracts are equal to the conditional expectations of scarcity

costs.

1. Introduction

The current allocation of electric energy is based on a system of fixed prices. In such a system the gap
between marginal cost of energy generation and the marginal value of energy consumption, hence the resulting
inefficiency, is quite large [6]. One scheme that closes this gap is that of spot pricing, [7], [3], [2]-

Spot pricing is impractical today because the necessary communications infrastructure is not yet in place.
A more practical scheme might employ future prices: the power company announces prices a day (or week) in
advance and consumers then have the lead time to adjust their demand. The announced future price would
depend on forecasts of some of the determinants of supply (e.g. scheduled generator shutdown times) and
demand (e.g. weather).

Future prices can more easily be implemented than spot prices, see [1]. However, since a price is announced
in period 1 (now) for energy to be delivered and consumed in period 2 (later), and since significant unanticipated
fluctuations in supply and demand can occur in the interim, some consumers will be rationed when the actual
period 2 demand exceeds the supply. The model we develop in this paper recognizes the cost of rationing borne
by frustrated consumers who have their electricity cut off.

Thus a future pricing scheme must take into account rationing loss, and it must ration on the basis of
available information. Also there must be a balance between raising prices to reduce rationing-caused losses
and lowering prices to increase welfare gains from increased consumption. The interruptible service contracts
proposed here incorporate both aspects. These are contingent contracts that condition service on particular
events or contingencies. A model for the market operation can be described as a two-step process as depicted
in Figure 1. In this paper we assume the consumers are identical, i.e. they have the same demand preferences.
We also assume the supply is a fixed constant s > 0, but the consumer demand preferences are random with n

possible sample points or contingencies w € Q.
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Figure 1: Market operation

Step 1. At the beginning of period 1 the power company announces a set of service contracts (p; R"f,, w e D),
k=1,2,.-.. Each consumer ¢ chooses one type of contract (Pr(ty; RE(t), w € ), where Dr(¢) is the price per
kWh of energy consumption for consumer ¢. The function RE(t) is a 0-1 valued function of w which speci-
fies the contingencies under which the service will be interrupted. When contingency w occurs the company
will deliver the service if RE(t) = 1, and the service will be interrupted if Rf(t) = 0. For example, we may
have a contract which ensures no interruption of service if the outdoor temperature falls in the range of 70F to
90F, where the event that the outdoor temperature is in the range of 70F to 90F is one of the contingencies in 2.

Step 2. At the beginning of period 2 consumer # observes the occurrence of a contingency, say w. Con-
sumer ¢ then selects a quantity d,,(f) kWh of energy. (We will see how this quantity is obtained in §2..) So
consumer ¢ pays pr(;)d.(t) if RE(t) = 1. Lastly, the power company has to decide which consumers to ration,
if any, so that (i) the total energy delivered does not exceed the supply for each demand contingency, and (ii)
each consumer’s contract is fulfilled. The latter decision is represented by the 0-1 valued function R.(t). The
company will deliver d,(t) to consumer ¢ if R, (¢) = 1. If R,(¢) = 0 consumer t will not receive the service.
Hence conditions (i) and (ii) are respectively given by:

D R,(t)du(t) < s forall w (1)

R,(t) = RE(t) forallt and for all w (2)

The outline of other sections is as follows. The optimal contracts are obtained by first formulating a
welfare problem. We then show that the optimum of the welfare problem can be sustained by interruptible
service contracts of the type described earlier. It turns out that the optimal solution requires a proper ordering
of the demand contingencies. The welfare problem is formulated in §2. We obtain the structure of an optimal
ordering of demand contingencies in §3. The optimal allocation is obtained for the special case when demand
preferences are additive. This will be worked out in §4. It turns out that the prices for the contracts are
conditional expectations of scarcity costs. Some concluding remarks are collected in 85.

2. Problem formulation

The structure of optimal contracts is obtained indirectly by first formulating a welfare maximization problem
and then by showing that the optimum can be sustained by interruptible service contracts offered to consumers
in a decentralized market. We assume the supply is a constant s > 0, the demand is random, and there is no
variable supply cost.

We first model consumer welfare. The set of demand contingencies is denoted by €, and the cardinality of
) is n. A consumer is characterized by her preference which consists of contingency dependent utility functions
U, w € Q. It is standard to assume that U,, are strictly concave functions with U,(0) = 0. The demand of
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any individual consumer is assumed to be infinitesimal compared with the total demand of all consumers. This
permits us to model the set of customers as a continuum indexed by ¢ € [0,1).} Consider a consumer who has
chosen contract (p; R,,w € Q), where R, is 0-1 valued. Suppose contingency w is realized at the beginning
of period 2. The consumer needs to decide her demand. If there is no service interruption, ie. R, =1, the

consumer’s demand in period 2, upon the realization of contingency w, is given by:

max U, (d) — pd (3)

Let ¢.,(p) := argmaxy>oUs(d) —pd be the solution to problem (3). This is the consumer’s demand curve
if contingency w occurs. It is a decreasing function since ¢, (p) = (UL)~Y(p), where U, denotes the derivative
of U, . Since the consumer is engaged in an interruptible service contract, her load demand ¢,,(p) will be met
only if R,=1.1f R, = 0, the consumer will not plan on making any demand since she knows she will not
receive the service. Hence the consumer’s decision on her demand depends on both the realization of random
elements and the type of service interruption specified on her contract. Moreover, since the consumer decides
her demand after the realization is observed, she suffers no loss when she knows she will not get the service
because, in that circumstance, her optimal demand is zero. This is unlike the model studied in [6] where each
contract specifies a reliability level but does not specify when the service will be interrupted. Therefore, in that
model, a consumer suffers a loss term if her demand is interrupted.

Suppose consumer ¢ is allocated the pair (p(¢); R, (t),w € ). Her welfare is given by

w(t) = Z Wwa(t)Uw(¢w(p(t))) (4)

weN
The total social welfare is the integral

W= [ % mRU ) (5)

wEN

Next we consider the allocation problem. In period 1 each ¢ is allocated a pair (p(t); R, (t),w € ). At
the beginning of period 2 a contingency is revealed. Suppose it is w. The power company now decides which,
if any, consumers are to be rationed. This is given by a rationing function R, :[0,1) — {0,1} defined as

Ro(t) = 0 if ¢ is rationed in contingency w
v 1  otherwise

The rationing function must satisfy the physical constraint

/0 R, ()¢, (p(t))dt <s forall w (6)

which simply says that supply meets rationed demand. The rationing functions must also meet contracts, that
is,

R,(t) = R,(t) for all ¢ and for all w (7)
The welfare maximization problem is to find functions p, R,,w € § subject to constraints (6) and (7) so as to
maximize the total social welfare W . It turns out that we need a two-part tariff so that the optimal solution
can be sustained as an equilibrium in a decentralized market by no more than n types of interruptible service
contracts. The welfare problem can be reformulated as an optimal control problem. To do this, we first define an
ordering of the set of contingencies . An ordering on € is an one-to-one correspondence f : Q — {1,2,---,n}.

1 With this convention the total number of customers is 1, so the supplies s; are measured in average kWh per customer.
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Suppose 2 has been ordered such that the contingencies are indexed by {1,2,--- yn}. Introduce the ‘state’
vector z and the ‘control’ vector z,

2(t) = (@1(8), -+, 2a(t)), 2(t) = (o(t), R(2))
where
R(t) = (Ra(t), -+, Ra(t)), ws(t) = / Ri(7)¢5(p(r))dr

Then the welfare problem can be reformulated as

max W= [Cwi= [ mr @U@ GO ®)
0 0 =1
subject to
xz(t) = }L(t)qﬂz(p(t))a te [O’ 1)’ i= 1, R L4 (9)
2i(0) = 0, z,(1) <5, i =1,..,n (10)
p(t) >0, Ri(t) € {0,1} (11)

This is a standard optimal control problem with state equations (9), state constraints (10), and control
constraints (11). The Maximum Principle [4] gives necessary conditions for a solution of (8)-(11). However, we
are interested in sufficiency which will be needed for contract design. For each p >0, R = (Ry,--- ,Rn) with
R; € {0,1}, and A = (Ag,---,)\,) with A; > 0, define the Hamiltonian

H(p,R, ) =Y mRi{Us(¢s(p)) — Aihi(p)} (12)

=1

The term m;); is the adjoint variable associated with the supply constraint (10). It is the scarcity cost of an
additional unit of capacity in contingency i. The following sufficiency theorem for optimality serves as the
backbone for designing the optimal contracts.

Theorem 1 (Sufficiency conditions) Suppose there exist \* € RY and H* > 0 such that for all P20 and
R; € {0,1},
H(p,R,\*) < H* (13)

Then the mazimum social welfare W* satisfies

W* = max WSH*+3(Z'/TZ-/\Z) (14)

=1

Moreover, if there is a feasible control z* = (p*, R*) which satisfies
H(p*(t), R*(t),\*) = H*, t € [0,1) (15)
and
1
Y- [ RO @) =0, i=1, 0 (16)
0

then this control is optimal.
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Proof. Let z be any feasible control and = the corresponding trajectory. Let W be the welfare attained when
control z is applied. From (8), (9), (12), we get

1 1 n
W = L H(p(t), R(t), \*)dt + /0 ;mAi&(t)¢i(p(t))dt
< B4 mim)
i=1
< H*+ s(i mA}) (17)

where the two inequalities in (17) follow from (13) and (10), respectively. The second part of the assertion
follows since (15) and (16) yield equalities in n. O

Thus an optimal solution z* maximizes the Hamiltonian H(p, R, \*) for each t. Condition (15) means
that the net benefit is the same for all consumers. Condition (16) is the complementary slackness condition. It
implies that at the prevailing prices the power company cannot increase its profit by offering a different set of
contracts. Hence (15)-(16) are conditions for consumer equilibrium and supplier equilibrium.

To find the optimum of the welfare problem (8)-(11), we need to find A* and H* that satisfy (15) and
(16). This requires a proper ordering of the contingencies. We examine this question in §3.. In §4. we proceed
to show that the optimal solution of the welfare problem can be sustained by contracts of the form (p;, R),
where Ri = (Ri,---,R) € {0,1}", i=1,2,---,m, is defined by

. 0 ifm<i
R = 18
m {1 ifm>1 ( )

Note that contract (pi, R') guarantees a service reliability of >,,~; Tm -

3. Optimal ordering of demand contingencies

For each w € Q and z > 0, let
b (py 2) 1= Uu((P)) — T6u(P) (19)

Given a set of values {)\, > 0;w € O}, we let p? be the solution to the algebraic equation
ho(pyAw) =0 (20)

We also let

i w M Of
_{0 if ho(p,Ay) >0 forall p>0 (21)

0 .
P : oo if hy(pyAy) <0 forall p>0

Now if f is an ordering of € and i = f(w), then U; := U, ¢; == ¢, and p) = 7°. It follows from the strict
concavity of U, that p°, is well-defined. We have the following useful lemma.

Lemma 1 Suppose 0 < p9 < 0o. Then for any p >0,
p < 0 = ¢i(p) = ¢i(0) = hi(p, Ai) £ 0 (22)

p> P = 6i(p) < ¢i(p}) = hi(p, M) >0 (23)
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Proof. The two implications in (22) follow from the decreasing property of ¢; and the strict concavity of U;,
respectively. The same argument applies to (23). m

The following lemma suggests a way to order the contingencies such that rationing functions of the form
given by (18) maximize the Hamiltonian. It also implies that no more than n such contracts are needed at
optimum.

Lemma 2 Let {)\, > 0;w € Q} be given. Obtain {pd;w € Q} and order the contingencies such that
Pl2py>-->p) (24)

For the given A = (Ay,--+,Ay), let p* be a mazimizer of max,>o H(p, R,)\). Assume H := MaXpe(o,1}»
H(p*,R,}) > 0. Then maxpe(o,1}» H(p*, R, )) is attained by an R:.

Proof. We first note that H(p*, R, \) = Yo miR;hi(p*, \;) is linear in each R;. So optimal R; is 1 (respectively

0) if hi(p*, As) is positive (respectively negative). Let ny := min{i | p? < oo} and ng :=max{ | p? > 0}. By

Lemma 1 and since p§ > --- > p, we get the following conclusions:

(i) If p* > p , then h;(p*,X;) > 0 for all i > n; and R™ maximizes H(p*,R, ).

(if) If p§ > p* > 994, for some ny > j > ny — 1, then hi(p*,A;) > 0 for all 4> j+ 1 and h;(p*, A;) < O for all

¢ < j+ 1. So the maximum is achieved by Ri*!.

(iif) If p* < pgz, then h;(p*, A;) <0 for all i < ny and hi(p*, A;) > 0 for all i > ny. The maximum is achieved

by R™*!. Note that we cannot have ny = n and p* < p? since H > 0. O
The next result shows that a contract which guarantees less frequent interruption should be sold at a

higher price.

Lemma 3 Let {\, > O;w € Q} be given. Order the contingencies such that (24 ) holds. Obtain A = (Ag,---,A,)
and let p; = argmaz,>oH(p, R, \). Alsolet 1 <iy < iy < <ip <m be such that

H(piuRila’\) == H(pikaRik:A) =: H
and
H(pi, R*,\) < H fori & {i1,---,ir}
Then
2> T (D)
pi = y (25)
iji m;¢;'(pi)
and pi; > Piy =00 2 Py -
Proof. Since maxp>o H(p, R*, \) = max,>o 22i>: TiU;(95(p)) — Xjd;(p) is maximized at p;, we get
> Uy (85(0))és" (ps) — Xihs' (pi) = O (26)

j2i

by evaluating £ H(p; R, ) =0 at p;. Now (25) follows from (26) since U’ (¢ (p:)) = ps.-
To see the second assertion we need to showwtha,t Dy, 2>pi, for 1<l<m < k. Suppose p;, < p;,, . By
Lemma 2 we see that

>0 ifj>4
hi(pi, A; - 27
J(pz J){ SO 1f_7<2[ ( )
and
>0 ifj>4,
hi(ps, , A; - 28
J(pzm J){ <0 ifj<ip ( )
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Our assumption p;, < pi, gives ¢;(py) > ¢i(pi,,) for all j. Hence by Lemma 1 and (28) we see that
hj(psy, A5) <0 forall j <im. This contradicts (27) since 4 < im |

The specific ordering exhibited in (24) is not very useful since it depends on the given set of values
{Aojw € Q}. The following lemma provides a sufficient condition which generates the ordering given in (24)
and is independent of the set of values {\y;w € 2},

Lemma 4 Suppose the contingencies are ordered arbitrarily. If X € R satisfies
H(p;, R*,\) = H >0 for all ¢ (29)
where p; = argmaz,>oH (p, RE, ). Then we get p) > p3 > -+ 2 P2 .
Proof. Since max,>o H(p, R%,)) is maximized at p;, we must have
H > H(pir1, B, N = mihi(piz1, M) + Hpigr, B, 2) (30)

Since H(pi+1, Ri+1, >\) = H: (30) gives

hi(pit1,Xi) <0 (31)
On the other hand, we have
H = H(p;, R}, \) = m;hi(ps, M) + H(ps, RN (32)
Since H(p;, R**1,\) < H, (32) gives
hi(pi, Xi) 20 (33)

Then by Lemma 1, (31) and (33) imply p; 2 p? > piy1. Hence we obtain p; > B>p>p3> 2 Pn 2 Py
O

4. Optimal Allocation for a Special Case: Additive Demand Pref-

erences

The results in Lemma 4 can be used to construct an algorithm that gives optimal A* and H* as required in
Theorem 1. We first try an arbitrary H > 0. Suppose there is a way to find A € R7 such that (29) holds.
Then by Lemma 2 each (p;, R) is a maximizer of max,r) H(p, R, \), where p; is given by (25). Moreover, the
contracts {(p;, R*)};_, are optimal for consumers. Finally, optimality for the supplier is achieved by adjusting
H such that the complementary slackness condition (16) is satisfied. In general, it is difficult to show the
existence of a vector A for which (29) holds. However, a special situation for which this is true is to assume
that the demand functions ¢; differ by constants. This assumption implies that the demand functions do not
intersect. Such non-intersecting property is essential since it implies that a consumer who consumes more in

contingency 4 than in contingency j at one price p will do the same at other prices.

4.1. A two-part tariff and optimal prices

We assume there is a strictly concave function Up with Up(d) — oo as d — oo (i.e. Up does not saturate), and
constants 0 < ¢; < ¢z < -+ < €y such that the demand curves are ordered in the following manner:

$:(p) = o(p) — ci , do = (Uo")™ (34)
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Since we have assumed U;(0) = 0, the following identities are immediate from (34).
U'(d)y=Uy(d+¢), 1<i<n (35)

(d) Uo(d+¢) —Up(ci) , 1<i<n (36)

Also since Up is stnctly concave and ¢; < i1, We get Uo(d + ¢;) — Up(e;) > Up(d + civ1) — Up(citr)
for all d > 0. By (36) this is equivalent to Us(d) > Uz+1(d) for all d > 0. Formula (36) also gives
Ui(d + ciy1 — i) = Up(d + ¢;) — Up(c;) = Usa(d) + Un(civi) — Uo(e;). By applying (36) again the previous
equation becomes .

Uir1(d) = Us(d + ciy1 — ¢;) = Ui(cita ~ ¢;) , for alld> 0 (37)

In other words, the curve d ++ Usy1(d) is the truncated curve d — Uj (d + et — c,) with the origin shifted to
the pomt (citr — €y Us(civ1 — ;) - By‘ the concavity of U; and (37) we infer that

Ui(eir1 — ) | Uina(d)

A Sut

o4

, foralld >0 R ! 38
Ciyn—c¢ d (38)
Lemma 5 For p>0 and 1 <4 5 n —1, suppose ¢;r1(p) > 0. Then
Ui (¢z(P)) Uit1($i+1(p)) (39)
&(p) T Pita(p)
Proof. By (34) and (37) we get . '
Ui(¢i(p)): _ Uii(@ir1(p)) + Ui(civ1 — i) '
¢:(p) = Git1(p) + ciy1 — ¢
‘ Uit1(#i+1(p)) T
> Zetl@it1P) o (38
e ) y (38)
O
Proposition 1 For any H > 0, there exists A = (A1,- -+, A,) such that
AZXz2M>0 (40)
and o ! ‘ .
H(p, R\ =H , foraili ' (41)

where p; = argmaz,soH(p, R\ = szi ﬂj)\j/szi ;. ‘Mereover;-py > pa > --- > pn and each (pZ,R)
mazimizes H(p, R, )). et ent

Proof. By Lemma 4 and (25) in Lemma 3 we see that p, = X,. So we solve the equation’ A
T {Un($n(An)) — X;¢n(xn)}' =H

and use the assumption Up(d) — oo as d — oo to obta,m An > 0. For each 1 <i<m,let X =
(0,-++,0,A5,+-+,A,) € B2, Also for each 1 < i < n—l let (;r; )\““1) = (O 0 z, /\2+1, sAn) € R
Assume A;q > Az+2 > -+ 2 Ap have been obtained and they satisfy H(pJ,R A;) = H for all j > i+1. We
will find \; that satisfies (40) (41). By Lemma 2 and since p;;1 = argmax,,»oH (p, R*",A**"), we must have

z+1(pz+17 Ait1) =1 z+1(¢z+1(Pz+1) i+1¢i+11(pi+1) >0 (42)
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Next we get
max H(p, R, (Mg, X)) 2 H(pipr, RS, (M1, A1)
P>
 H(pia, R AT
+mi{Ui(¢s(Piv1)) — Aiv1s(Piva)}

= H + mihi(Piy1, Mi+1)
> H

The last inequality follows from (42), (39). Since maxp>o H(p, R, (z,\**1)) is decreasing in z, there exists
X; > Aiy1 such that max,>o H(p, RY, (A;, A1) = H. This proves the first assertion.

The formula p; = Y i>i TiAi[ 2 i ™5 follows from (25) and the fact that ¢;'(p) = ¢o’(p) for all i. The
remaining assertions follow directly from Lemma 2 and Lemma 3. [

The number ;); is interpreted as the scarcity cost or dual variable associated with the demand-supply
constraint for contingency i. Hence p; = > j>i wiA;/ ZjZi w; is the conditional expectation of scarcity costs
given that the service is uninterrupted only in contingencies 4, + 1,---,n. This is different from the bid prices
obtained in [6]. The expected demand for a consumer who picks contract (p;, R')is 3,5, mi¢i(pi), so her electric
billis p; 3. ;5; 7i¢;(p;) . Moreover, her net surplus (welfare minus electric bill) is 3, 7 {U;(¢;(pi))—pid;(p:)} -
Since p; = Y5 MiAj/2 45 i it is easy to see that the net surplus is different from the Hamiltonian
H(pi,Ri,)) = H. By (15) in Theorem 1 every consumer must end up with the same net surplus at the
optimum. Hence the set of contracts {(p;, R*)} cannot sustain the optimal solution of the welfare problem
(8)-(11). To overcome this difficulty we consider a two-part tariff. The two-part tariff consists of a price p;
for contract (p;, R') and a cost Ci()\) such that the net surplus for consumers who have chosen this contract
is now 35, mi{Uj(¢;(pe)) — pi¢j(pi)} — Ci(\) and equal to H. If C;()) is negative, it is a reimbursement
for consumers who have picked contract (p;, R*). By Proposition 1 the scarcity costs A1, Az, -0, A satisfy
H = H(p;, R}, ) = 35, mi{U;(¢5(pi)) — Xjoi(p;)} for each i. Hence C;()\) are given by

Cz(A) = Cz(Aza )\i+1a T )‘n)
=Y mi(A —p)gi(mi) , i=1,--,n (43)
jzi

Thus the contracts are of the form ((p;, R¢), Ci(})), and all consumers have the same net surplus. Note
that since pn = An, we get Cnp(A,) = 0. Now by Theorem 1 and since each consumer has surplus H,
the contracts are optimal for consumers. However, the prices {p:};_; may not be optimal for the supplier.
To obtain the equilibrium prices we need to adjust H appropriateiy. This requires an examination of the
dependence of \; and p; on H. We will show that both A; and p; are decreasing in H. To simplify the

notation, let o; := ) j>i T 1 <4 < n. We first obtain some useful lemmas.

Lemma 6 Consider the vectors A = (A1,--+,A,) and p = (p1,---,Pn) obtained in Proposition 1 .

Op; 2 forj2>i
—_— = o3 44
oA 0 for j <i (44)

Proof. The partial derivatives in (44) are immediate since p; = Ly i>iTiAj, 1<é<n. (]

Lemma 7 (i) For each 1 <i < n, we get
a ]
o (e, M) = ;%(Zﬂ(/‘j — Xi))éo’ (9i) — ¢i(pi) (45)

2 j>i
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(i) For each 1 <i<n-—1 and j > i, we get
o w5 ’
a—/\ihj(Pia/\j) = 5l D mh— M) (p:) (46)
P>, VA

Proof. (i) By using (44) we get

o
A hioi X) = %{Ux@(pz-)) — Xidi(p)}

= Ui,(¢i(pi))¢i,(pi)z_z — #i(pi) — X’ (s g
= (5 = %) =200 (35) — i(ps) , since ¢/(p) = ¢o'(p) for all i

= %(Z mi(A; — X))o’ (0:) — ¢i(pi)

iog>i
(ii) The calculations are similar to those in (i). We have

aohi(pi\) = o {Us(85(p1) ~ Ao}

= Uy (85(p))85'(00) 5 = X85’ (pi)
= (pi — Aj)Z—Z%’(pi)

= %( > m—A))éo’ (pi)

vo>d, A
O
Lemma 8 For each 1 <i <n — 1, the number A; defined below is zero.
A; = ﬂ'iZ"rj(}\j —/\i)+Z7l'j Z W;(Al—/\j) (47)

i>i i>i 124, I#5

Proof. The second term in the right hand side of (47) for I =4 is 3_ ., mym(A; — A;), which is the negative of
the first summation in (47). Thus (47) becomes

A; = Z Z 7rj7rl()\1 - /\j) (48)
J>i I>4, L
It is now clear that A; = 0 since the indices I and j appear symmetrically in (48). |

Proposition 2 (i) For each 1 <i<mn, g% = —m;¢i(p;). Hence %g <0 forall i.
(%) g—f; <0 for each 1<i< n.

Proof. (i) We first show % = —pdn(pn) < 0. By (41) H = 1, {Up(pn) — Aa®n(Pn)} = 7nhn(Pn, An). Then
(45) gives % = — T ¢n(pn). Next we show the claim is also true for 1 < i <n — 1. By (41) we have

H = Zﬂj{Uj(%(Pj)) = Aidi(ps)}

= mihi(pi, X)) + ) _ wihi(p, ;)
Jj>i
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By using the derivatives (45) and (46), we get

Zf = m{% D mi(Ag = X))o (pe) — ¢i(pi)}
¢ ©og>i
+Z’“ﬂ‘{g—;( > m(— X))o’ (pi)}
i>i L

fl

-
—midi(pi) + ;%Ai%'(l’i)
i
where A; is the number defined in (47). The claim is proved since A; =0 by Lemma 8.
(ii) We have g—g = g—plii . g%; for j > i. The claim then follows from part (i) above and Lemma 6. |

4.2. Optimal allocation and contracts

We are now ready to construct optimal A\*, H*, and contracts {(p}, R)}2_,. We begin with a trial surplus H
and find the numbers of consumers that can be assigned to the n contracts. The sum of these numbers are
shown to be decreasing in H , hence we can tune the parameter H until this sum equals one. When this occurs
the resultant prices are optimal. The algorithm can be described in two steps.

Step 1: Begin with an arbitrary H > 0. Obtain the numbers A; > Az 2> -+ 2> Ar > 0 as given in Proposition

1. Calculate the prices
. Ejzi TjA;

; = t=1---,n
(3 ) b ?
ijiﬂ'j

Consider the contracts {(p;, B*)}i; -
Step 2: Let (3; denote the number of consumers who are assigned to contract (ps, R*). These quantities are

obtained by solving the following n equations.

Zﬂj¢i(pj)=37 1=1,2,---,n (49)

j<i

The next lemma gives an useful expression of 3; in terms of {3; ; j <4 —1} for ¢ > 2.

Lemma 9
3
B = o) (50)
(i —€im1) Xj<i—1 B

Bi = ,12>2 (51)

¢i(p:)
Proof. (50) is exactly (49) when i = 1. For ¢ > 2, we have ¢;(p) = ¢;—1(p) —¢; —ci—1 if ¢i(p) > 0. Then

s =) B;di(ps)

J<i
= Y Bi(di-1(pj) — ci — ci1) + Bidi(ps)
i<i-1
= Y Bili-1(ps)) — (e — ci-1) > B+ Bidi(pe)
jLi—1 j<i—1
= s—(ci—ecim1) D, B+ Bidi(p) , by (49) (52)
Jj<i-1
It is now clear that (51) follows from (52).
Proposition 3 Each 3;, i =1, ,n, is monotonically decreasing in H .
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Proof. We show this by an induction on i. By Proposition 2 an increase in H will decrease all p; and therefore
increase ¢1(p1). By (50) this will decrease ;. Next, by induction assumption, suppose an increase in H
decreases f31,--+,8;_1; ¢ > 2. Then by the same argument and (51) 3; will also be decreased. This completes
the proof. O

An immediate implication of Proposition 3 is that there exists a unique H* > 0 such that Y .., G;(H*) =
1. We use the algorithm described earlier to obtain A} and p} that correspond to this H*. Then the n contracts
{(pt,R") ; i=1,2,---,n} are optimal for the consumers since by (41) and (43) each consumer has net surplus
H*. By (49) supply is equal to rationed demand in all contingencies, so the complementary slackness condition
(16) is satisfied. We summarize these conclusions in the following theorem.

Theorem 2 There ezist H* and \* such that the contracts {(p}, R*) ; i = 1,2,---,n}, where pf =35, ™}/
> j>iTj» are optimal. The set of consumers who have picked contract (p}, R®) is of Lebesgue measure B;(H*),
and the B;’s satisfy > ., Bi(H*) = 1. Furthermore, these n contracts sustain the optimum of the welfare
problem (8)-(11) as an equilibrium provided that the amount C;(A*) is charged (if C;(X*) is positive) or
reimbursed (if C;(\*) is negative) to consumers who have chosen contract (p},R%). a

5. Concluding Remarks

In this paper we have considered a two-period pricing model for an electric power system. The power company
offers a set of contracts in period 1. Each customer picks a contract in period 1 and then decides her demand after
the random element is observed in period 2. This is a decentralized decision problem. The supplier, on the other
hand, needs to design a rationing scheme so that the demand can be met by the supply available in period 2, and
each contract can be fulfilled. We have shown that it is possible to design a set of contracts that induce customers
and the supplier to act optimally. Each contract consists of a price p}, a cost/reimbursement term C;(A*), and
a vector R € {0,1}" that specifies the contingencies under which the service will be interrupted. It is shown
in §4.1. that the specification of service interruption depends on an ordering of the demand contingencies.

The type of contracts considered in this paper is of the form (p, R), where R € {0,1}". This permits
us to assume that consumer preferences are characterized only by utility functions. Moreover, the welfare
function is simplified and does not contain a loss term as discussed below. In general, demand preferences are
characterized by both utility and loss functions. This is because when there is independent random supply, a
consumer will suffer a loss when the service is cut.

Suppose there are independent supply and demand contingencies. The supply takes random values
1 < -+ < 8, with probabilities 71,-++,7m. The market works as follows. In period 1 the power company
announces a set of contracts {(pij,pi;)}, where p; = 3°;5; > 4> ; mmx is the probability that a consumer who
picks contract (p;j, pi;) will receive her service. Suppose random demand preference k is revealed to consumer
t at the beginning of period 2, and the supply available in period 2 is s;. Then consumer ¢’s demand is:

arg max,>opi;Uk(d) — (1 — pij)Le(d) — pizd (53,

where U and L; are the utility and loss functions in contingency k, respectively. As in the model considerec
in §2. the company selects a rationing function R;;(t) so that the supply constraint can be met.

The problem is complicated by the presence of the loss term in (53). In this formulation, the contract
prices are no longer given by the conditional expectation of scarcity costs. However, the analysis becomes easier
when the demand functions corresponding to each pair (Uk, Li) are “horizontal” shifts of each other. That is,
the preference functions are

Un(d) :=U(d — ) » Le(d) == L(d—), k=1,---,n (54)
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where the random numbers 43 > --- > ¥, > 0 occur with probabilities 7y, -+, 7. The functions U and L
satisfy U(0) = L(0) = 0. Also U is strictly concave and L is convex. Then the problem is equivalent to
the case of deterministic demand preferences (U, L), and random supply with values s; — t;;v;5, ¢ = 1,--+,m,
j=1,--+,n, occurring with probabilities n;m; (see [5] for details). The number ¢;; is the number of consumers
who are assigned to contract (p;;,pi;)-
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