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Abstract 

Robust H� output feedback control problem for a class of 

switched linear discrete-time systems possessing norm-

bounded uncertainty and time-varying delay is investigated. 

A switched dynamic output feedback controller is sought 

that can robust exponentially stabilize and reduce to a 

prescribed level the effect of disturbance input on the 

controlled output in the closed loop. A delay depen dent 

linear matrix inequality based sufficient condition for the 

problem to be solvable is derived via the switched Lyapunov 

functions. Controller design is performed by solving a set of 

linear matrix inequalities. An illustrative example along with 

simulation results is given to demonstrate the validity of 

these novel derivations.  

1. Introduction 

REAL world technological systems are known to exhibit time 

delays, due to long transmission lines or distributed physical 

parameters in the plant, as well as uncertainties, due 

measurement errors or noise and exogenous disturbance. 

Considerable efforts were devoted to the problem of robust H�

stability and stabilization of uncertain time-delay systems [1-6] 

due to the rapid development of and world-wide applications of 

communication networks.  

For the considered class of systems the existing stability and 

stabilization criteria are often classified as delay independent [1-

3] and delay dependent [4-6] criteria. In general, the delay-

dependent stability and stabilization criteria are less 

conservative than delay-independent ones when the size of the 

time-delay is small. Recent research effort is focused more on 

delay-dependent stabilization. The main objective of the delay-

dependent H� control is to obtain a controller that allows a 

maximum delay size for a fixed H� performance bound or 

achieves a minimum H� performance bound for a fixed delay 

size. However, it is difficult to realize state feedback when 

perfect information of the state is not available. As also pointed 

out in [7], a static (or dynamical) output feedback controller is 

more practical to deal with uncertain systems. Therefore, the 

problem of H� dynamical output feedback for uncertain systems 

with time-varying delays has been studied, e.g. see works [3 -7]. 

Switched systems, as an important class of hybrid systems, have 

drawn considerable attention in control, communication and 

computer communities for both theoretical development and 

applications. A number of stability analysis and controller 

design results for switched systems have appeared recently [8-

19]. Among the three basic issues of switched systems [11, 12], 

the problem of stabilization under arbitrary switching plays an 

important role because it provides a high probability of pursuing 

other control goals in addition to stability.  

It has been shown [10] a switched system is asymptotically 

stable under arbitrary switching if and only if all subsystems 

share a common Lyapunov function [10]. Multiple Lyapunov 

function based approach was used in [8]. Switching Lyapunov 

functions were employed to study stability and control synthesis 

for linear discrete-time switched systems in [9], [13-15], and 

were extended further to systems with uncertainties in [14]. In 

there, two equivalent LMI-based sufficient conditions for the 

problem to be solvable are presented using switched static state 

feedback and switched static output feedback controllers. In 

particular, works [16-17] investigated the robust H� dynamic 

output feedback control problem for linear discrete-time 

switched systems that do not possess uncertainties and time-

delays. Generally, there considerably fewer references on robust 

control of switched systems with time-delay in comparison with 

the literature for switched non-delay systems. Especially this is 

the case about delay-dependent stability and stabilization 

criteria.  

Following the idea and the proving argument in [9], the 

robust H� output feedback control problem for a class of linear 

discrete-time switched systems with norm-bounded uncertainty 

and time-varying delay is further investigated and improved 

results with ameliorated restrictions derived in this paper. A 

dynamic output feedback control that stabilizes the closed-loop 

switched system in robust exponential mode and reduces the 

effect of the disturbance on the controlled output to a prescribed 

level for all admissible uncertainties is derived. Switched 

Lyapunov function technique is used to find a delay–dependent 

linear matrix inequality (LMI) based sufficient condition for the 

problem to be solvable. The design of switched output feedback 

controllers is performed by solving a set of LMI and in 

conjunction with the rule of arbitrary switching [11, 12] albeit 

simple regular switching is preferable. The paper is further 

organized in the traditional standard.  
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2. Notation and Preliminaries 

In the sequel, the Euclidean norm is used for vectors. TW , 
1−W , )(max Wµ , )(min Wλ  and )(max Wλ denote, respectively, 

the transpose, the inverse, the maximum singular value, the 

minimum and the maximum eigenvalue of any square matrix 

W . The notation >W ( ≤<≥ ,, ) 0  is used to denote a 

symmetric positive-definite (positive-semidefinite, negative-

definite, negative-semidefinite, respectively) matrix, I  is the 

identity matrix of appropriate dimension. Letter N denotes the 

set of nonnegative integers. The space ),0[2 ∞l  consists of 

square-summable infinite vector sequences over ).,0[ ∞  Symbol 

∗  is used in some matrix expressions to indicate a symmetric 

structure.!

The class of switched systems  
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is considered. In there: Nk ∈ ; nRkx ∈)(  is the plant state, 

lRku ∈)(  is control input, rRky ∈)(  is the measurement 

output, pRkz ∈)(  is the controlled output, and qRkw ∈)(  is 

the disturbance input assumed to belong to ),0[2 ∞l ; the 

sequence },,2,1{:)( mMNk �=→σ  represents a piecewise 

constant switching signal; )(kd  is a positive integer 

representing the time-varying delay in the system and satisfying 

,)(0 21 dkdd ≤≤<                              (2) 

where 
1d  and 

2d  are known positive integers. Function )(kφ

is a real-valued initial condition on ]0,[ 2d− . For a )(kσ , 

σσσσσσσσσ 1321 ,,,,,,,, HDCCBBBAA dd
 and 

σ2H are 

known real constant matrices ,, σσ dAA ∆∆ σσσ CBB ∆∆∆ ,, 21

and 
σdC∆  are unknown matrices representing time-varying 

parameter uncertainties, and are assumed to be of the form  

[ ],
2

1

σσσσ
σ

σ

σσσ

σσσ
udxx

y

x

d

d
FFF

E

E

BCC

BAA
Γ�
�

�
�
�

�
=�

�

�
�
�

�

∆∆∆

∆∆∆ (3) 

where 
σΓ  is an unknown time-varying matrix function 

satisfying  1)(max ≤Γσµ , ,, σσ yx EE σσ dxx FF ,  and 
σuF  are 

known real constant matrices. 

2.1 Exponential Stability Analysis 

In this sub-section, we consider the unforced disturbance-free 

system (1), i.e. when 0)( ≡ku  and 0)( ≡kw  hence 
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Definition 1. The system (4) is said to be robust exponentially 

stable if there exist constant scalars 10 << a  and 0>b  such 

that 
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for all admissible uncertainties and arbitrary switching signal. 

The following proposition is used in proving Theorem 1. 

Proposition 1 [6]. Let ���� ,,,  and Γ  be real matrices of 

appropriate dimensions satisfying 0>�  and 1)(max ≤Γµ . 

Then, for any scalar 0>ε  satisfying 0>− T
��� ε , it holds 

that 
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Theorem 1. The system (4) is robust exponentially stable if 

there exist a set of scalars 0>iε , matrices 0>iP and matrix 

0>Q  such that the following matrix inequalities hold 
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for Mji ∈∀ , , where .1
~

12 +−= ddd

2.2 The H�  Performance 

In this sub-section, we investigate the H� performance of the 

unforced system (1), i.e. 
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Definition 2. Given 0>γ . The system (6) is said to be robust 

exponentially stable with an H�-norm bound γ , if the 

following conditions are satisfied: 

(i) The disturbance-free system (24) is robustly exponential 

stable; 

(ii) Under the zero initial condition, the controlled output 

kz satisfies 
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for any nonzero 
2)( lkw ∈  for all admissible uncertainties and 

arbitrary switching signal. 

Theorem 2. Given 0>γ . The system (6) is robust 

exponentially stable with an H�-norm bound γ  if there exists a 

set of scalars 0>iε , matrices 0>iP  and matrix 0>Q  such 

that the following matrix inequalities  
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hold for Mji ∈∀ , . It presents the sufficient conditions for 

robust exponentially stability with a H�-norm bound γ  of (7). 

Remark 2. Inequality (7) is not a LMI. Thus via pre- and 

post-multiplying (7) by },,,,,,{ 11 IIIIIQPdiag i
−− , it can be 

converted into the following LMI 
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for Mji ∈∀ , , which can be easily solved by the respective 

toolbox of the MATLAB. 

3. A Solution to Dynamic Output Feedback 

This section presents the main results on robust H� control 

for the system (1) via switched dynamic output feedback. The 

switched dynamic output feedback (DOF) controller is 

constituted of a family of dynamic output feedbacks such that 

each of which is designed for a particular subsystem.   

Considering the following switched full-order dynamic 

output feedback controller 
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where n
c Rkx ∈)(  is the controller state vector and 

σσ KK BA , , 
σKC  are system matrices to be determined later. 

Application of the control law (8) to the system (1) yields  
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Definition 3. Given 0>γ . The system (1) is said to be robust 

exponentially stabilizable with an H�-norm bound γ , if there 

exists a switching dynamical output feedback controller (8) such 

that the closed-loop system (9) of the plant (1) is robust 

exponentially stable with an H�-norm bound γ . 

3.1. Exponentially Stabilizing Switched DOF Control

First, we investigate the robust exponential stability for the 

disturbance-free system (9) and give a novel result. 

Proposition 2. The disturbance-free system (9) is robust 

exponentially stable if there exist a set of scalars ,0>iε

matrices 0>iP  and 0>Q  such that the following matrix 

inequalities  
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Theorem 3. The disturbance-free system (9) is robust 

exponentially stabilizable if there exist matrices 0>X , 0>iY

and 
iii ΨΦΠ ,,  such that the following matrix inequalities  

,0

00

0

42

33

21

1

<

�
�
�
�

�

�

�
�
�
�

�

�

−

∗−

∗∗−

∗∗∗−

ii

i
T

i

ji

i

JL

JL

JL

J

,, Mji ∈∀   (11) 

hold for some given matrix 0>Q  and a set of scalars 0>iε , 
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Then a desired switched dynamic output feedback controller (8) 

is parameterized as follows:  

,)( 21
1 T
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where S  and 
iW  are any non-singular matrices satisfying 

.i
T

i XYISW −=                      (14) 

3.2. ∞H Performance Switched DOF Control 

In this sub-section, the focus is on the robust exponential 

stabilization with an H�-norm bound γ  for the system (1). The 

next Proposition 3 plays a key role in proving the main result. 
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Proposition 3. Given 0>γ . The system (9) is robustly 

exponentially stable with an H�-norm bound γ  if there exist a 

set of scalars 0>iε , matrices 0>iP  and 0>Q  such that 

the following matrix inequalities  
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dFFE diii
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~
 are given as in Proposition 2. 

Via considering the H� performance, Theorem 4 below 

summarizes the main result. 

Theorem 4. Given 0>γ . The system (9) is robust 
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that the following matrix inequalities  
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hold for Mji ∈∀ , , some given matrix 0>Q  and a set of 

scalars 0>iε . Furthermore, then a desired switched dynamic 

output feedback controller is given in the terms of (8) along with 

its parameters defined by (12-14). 

Remark. It is easy to see that (16) is not a LMI with respect 

to the parameters 0>Q  and Mii ∈> ,0ε , since 
iε  and Q

appear non-linearly in (16). Thus parameters 
iε  and Q  must be 

fixed such that (16) is an LMI in 
iiiYX ΦΠ ,,,  and 

iΨ .  

4. An Illustrative Example 

In this section, an illustrative example along with numerical 

and simulation results are presented to demonstrate the 

effectiveness and applicability of the novel theory in the 

preceding section with the simple regular switching law. 

Consider the system (1) with 2=m , and with its parameters 

defined as follows: 
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�
�

�

−−

−−
=W   

such that the equalities (43) hold. Therefore, by Theorem 4, a 

desired switched dynamic output feedback H� controller is 

found in the form of (29) with parameters as follows:  

,
2831.15153.2

0303.19361.1
1 �

�

�
�
�

�

−

−
=KA ,

1724.65157.10

8325.24704.9
1 �

�

�
�
�

�

−−

−−
=KB

,
0667.00938.0

0178.00453.0
1 �

�

�
�
�

�

−
=KC ,

0785.05391.0

8002.02598.0
2 �

�

�
�
�

�

−
=KA

,
2237.114589.0

2976.140463.9
2 �

�

�
�
�

�

−−

−−
=KB .

0152.01036.0

0832.01640.0
2 �

�

�
�
�

�

−

−
=KC
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For this control design, the simulation experiments were 

carried out for the initial conditions Tk ]1,6[)( −=φ  with 

]0,4[−∈k  and .]3,7[)0( T
cx −=  The main simulation results 

are shown in Figures 1, 2, and 3.  

Fig. 1.  The response of plant state vector x . 

Fig. 2.  The response of controller state vector 
cx

Fig. 3.  The feedback control vector u  generated.  

5. Conclusion 

A design for switched dynamical output feedback controller 

that guarantees the resulting closed-loop switched system is 

robust exponentially stable with a prescribed H�-norm bound is 

proposed. The sufficient condition for the problem to be 

solvable is delay-dependent, and it is given in terms of LMI. 

Moreover, the existence of a family of dynamical output 

feedback control laws is given in terms of the solvability of 

linear matrix inequalities. In order to account for all possible 

switching from each subsystem to another, the proposed 

conditions have to be satisfied for all pairs ( )ji,  under the rule 

of arbitrary switching.  
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