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ABSTRACT 

This paper investigates the use of uniform circular arrays 
(UCAs) having specially synthesized patterns at the base 
stations of WCDMA cellular systems, and the realized 
reduction in intercell interference. UCAs are very practical 
for this type of application as they can provide 360 degrees 
of coverage. UCA patterns that are steering-invariant and 
where the sidelobe levels are controllable are synthesized. 
The decrease in the ratio of intercell interference to intracell 
power resulting from the use of these arrays in a beam-
steering scheme will be assessed, and the advantages and 
disadvantages of each pattern type will be discussed. 
 

I. INTRODUCTION 
The number of served users in 3G WCDMA cellular 
networks is downlink limited in many scenarios due to 
increased interference [1]. Advanced antennas are used to 
reduce interference [2], and adaptive beamforming 
employed to increase cell coverage and user capacity 
through antenna gain and interference rejection [3]. Two 
beamforming methods are normally considered: the fixed 
beam, and the steered beam. The first makes use of a 
specified number of fixed beams to cover a cell sector, 
whereas the second allows pointing the beam towards a 
specific user. 
 
With beam steering, the antenna pattern needs to remain 
unaltered irrespective of the look direction. This was an 
assumption in [4], but this property was obtained in [5] 
where uniform circular arrays with Chebyshev patterns 
were designed, using a technique first proposed in [6]. 
UCAs, where uniform means equi-spaced, are very 
practical for deployment at base stations since they 
provide all-azimuth, i.e. 360 degrees, coverage. 
 
Interesting UCA patterns are obtained by first 
transforming the UCA into a virtual uniform linear array 
(ULA) using the technique of [6], and then applying a 
special excitation to this virtual ULA, which is 
transformed back into a UCA. The transformation 
guarantees the steering-invariance property of the 
resulting UCA pattern, whereas the choice of the ULA 
excitation is responsible for the sidelobe level control and 
the directivity of the pattern. Three excitation types that 

are good candidates are the famous Dolph-Chebyshev, the 
modified-Chebyshev [7], and the discretized Taylor One-
Parameter [8] excitations. The first two result in equi-
ripple sidelobes, and the third in decaying sidelobes. A 
Dolph-Chebyshev distribution gives the smallest 
beamwidth for a prescribed sidelobe level, or the lowest 
sidelobe level for a desired beamwidth. The modified-
Chebyshev distribution solves the directivity saturation 
problem of Chebyshev distribution for high numbers of 
elements at the cost of a slightly larger beamwidth. The 
number of sidelobes is smaller. A Taylor One-Parameter 
distribution is the most directive with a beamwidth 
smaller than that of modified-Chebyshev but still larger 
than conventional Chebyshev. Because of the decaying 
behavior of the sidelobes, this distribution is most 
practical for use because it leads to the least noise and 
interference from the far-out sidelobes, as compared to 
the two other distributions. A note is that applying a 
uniform excitation to the ULA is not suitable when 
sidelobe level control is a priority. A uniform distribution 
is a special case of the Taylor One-Parameter distribution. 
 
The obtained UCAs, which will be respectively called the 
Chebyshev, modified-Chebyshev and Taylor UCAs, have 
steering-invariant patterns and controllable sidelobe 
levels. As expected, the use of these arrays at the base 
station of WCDMA cellular systems in a beam-steering 
scenario leads to substantial decrease in the ratio of 
intercell interference to intracell power, as compared to 
the omnidirectional or the 3-sector cases. In the 
omnidirectional case, there is one sector per cell and the 
base station (BS) is installed at the center of the cell and 
equipped with an omnidirectional antenna. The 3-sector 
case is when three antennas are used at the BS, each 
covering 120 azimuthal degrees [9]. Among the three 
UCA types, the Taylor UCAs result in the smallest ratio 
of intercell interference to intracell power, followed in 
order by Chebyshev and modified-Chebyshev UCAs. 
 

II. PROBLEM FORMULATION 
The ratio of intercell interference to received intracell 
power is given as [9] 
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where l denotes the mobile station (MS) of interest, k the 
serving BS, PT the total BS transmit power, and J the 
number of cell sectors in the network. In (1), ,k jg  is 
expressed as 
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where K is the path gain, n the pathloss exponent, kjd  the 
distance from BS k to MS j, kjG  the antenna gain from BS 
k in the direction of MS j, and kjξ  is the lognormal 
shadowing from BS k to MS j. kjξ  is a zero-mean 

Gaussian random variable with variance 2σ . 
 
For a UCA with N isotropic elements and radius r, let 

( )c θa  denote its array response vector. Let ( )v θa  be the 
array response vector of the corresponding virtual ULA. 

( )v θa  is given by [6] 
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In (3), θ  is the azimuth angle, 
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In (4), ( )mJ ⋅  is the Bessel function of the first kind and 
order m, λ  is the wavelength, and in (5), 2 /j Ne πω = . The 
size of the virtual ULA is 2 1vN h= + , and h is given by 
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for some predetermined ε . The approximation in (3) 
requires that 2 /N rπ λ� . From (3), it follows that: 
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where sθ  is the steering angle and C is a (2h+1)-element 
vector given by 
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and [ ]1 0 1, , , ,v h hI I I I I− −=I L L  is the 
coefficients vector of the virtual ULA. From (7), it is 
deduced that the coefficients vector of the UCA is: 
 

 =D C J F .      (9) 
 
In the above derivations, the array elements were 
considered to be isotropic and mutual coupling was not 
incorporated. In fact, (9) will remain unchanged for the 
case of non-isotropic elements, and a method described in 
[10] makes it easy to account for mutual coupling in the 
formulation. 
 
For a modified Chebyshev linear array with 2 1vN h= +  
elements and a sidelobe level ratio equal to R, the 
coefficients have mirror symmetry and are given by 
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where h m h− ≤ ≤ , ( )pT ⋅  denotes a Chebyshev 
polynomial of order p, q is an integer greater than unity, 
and ( )1 1/cosh cosh / 2qq R h−⎡ ⎤γ = ⎣ ⎦ . When 1q = , the 

linear array is a conventional Dolph-Chebyshev array. 
 
For the Taylor UCA case, the elements of the virtual ULA 
should have the following coefficients [8, 11] 
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where 0 ( )Ι ⋅  is the zeroth-order modified Bessel function 
of the first kind, and β  is a parameter that controls the 
maximal sidelobe level (MSLL). 
 
After obtaining the coefficients from (10) or (11), C and 
consequently D can be computed. The UCA pattern in the 
azimuth plane is given by 
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where nd  denotes the n-th element of D, and 2 /k π λ= . 
The pattern can also be deduced from (7). 
 

III. SIMULATION RESULTS 
As a first example, we take a UCA with N = 35, MSSL = 
–20 dB, and an inter-element spacing 0.194d λ= . The 
radius ( )( )/ 2sin / 1.084r d Nπ λ= = . For 0.05ε = , h = 
16 and the virtual linear array has 33 elements. The in-
plane azimuth array pattern of the Taylor UCA is plotted 
in Fig. 1 for 90sθ = − o , 0o , and 60o . As can be seen, the 
three patterns are the same except for the angle shift. For 
this example, 2.222β = , which is independent of the look 
direction. The same remark holds for the other UCA 
types. 
 

 
Figure 1. Normalized array patterns in the azimuth plane for the 
Taylor UCA for N = 35, MSSL = –20 dB, and 0.194d λ=  
 
In the second example, N is 39, MSLL = –20 dB, 

/ 2r λ= , and 0sθ = o . Fig. 2 depicts the in-plane azimuth 
array patterns of Chebyshev, modified-Chebyshev (q = 2) 
and Taylor UCAs. A note is that the Taylor UCA always 
has a narrower main lobe than the modified-Chebyshev 
design, but still a wider one compared to the Dolph-
Chebyshev design. The modified-Chebyshev UCA has 
the smallest number of sidelobes. The maximum-to-
minimum absolute coefficient ratio (dynamic range of the 
taper weights) is smallest for the Taylor UCA, followed 
respectively by that of the modified-Chebyshev and 
Chebyshev cases. The same comparison holds for the 
maximum phase difference in the coefficients. 
 
To assess the decrease in the intercell interference to 
intracell power ratio, a simulation model based on a 
symmetric network of equivalently equipped BSs is 

adopted. The simulated network consists of 7 hexagonal 
cells. The MSs are assumed uniformly distributed over 
the network and present only in the azimuth plane, and 
the BSs are assumed to transmit at their maximum power. 
 

 
Figure 2. Patterns for N = 39, MSSL = –20 dB, / 2r λ= , and 

0sθ = o  
 
Fast fading is considered averaged out by perfect power 
control, diversity, and channel coding. In the simulation, 

50 dBK = − , 8 dBσ = , and the pathloss exponent n is 
varied from 2 to 5, which is the interval of practical 
values appearing in empirical measurements [12]. The 
average of 10000 independent iterations is taken. In each 
iteration, a user is created at a random location and (1) is 
computed for this user. Finally the average value of F is 
calculated. The UCA assumed at each BS has 33 elements 
and a MSLL of -20 dB. The elements are considered 
isotropic and mutual coupling disregarded. Suitable 
antenna elements can be used though, and the Matrix 
Pencil method can be employed to compensate for the 
mutual coupling effects. The resulting average value of F 
for the Dolph-Chebyshev, modified-Chebyshev and 
Taylor designs compared to each others and to the 
omnidirectional case is plotted in Fig. 3 versus n.  
 

 
Figure 3. Average F versus pathloss exponent n 

 



 

Evidently, the use of beam steering with the three UCA 
types results in much lower F in comparison with the 
omnidirectional case, and this is due to the narrow beam 
and low sidelobes in the patterns of the UCAs. As 
expected, F decreases with increasing n. A larger n means 
more power attenuation, and consequently less 
interference with other users. The Taylor UCA results in 
the smallest F, followed by Chebyshev and then 
modified-Chebyshev. The decay in the sidelobes of the 
Taylor UCA leads to less interference from the direction 
of the sidelobes, which explains the superiority of the 
Taylor UCA in terms of the ratio of intercell interference 
to received intracell power F. On the other hand, the 
Chebyshev and modified-Chebyshev UCAs both have a 
constant sidelobe level, but the former has a narrower 
beamwidth, which also explains why it resulted in smaller 
F. 
 

IV. CONCLUSION 
With the foreseen growth in the number of 3G WCDMA 
subscribers, the need to reduce the value of the ratio of 
intercell interference to received intracell power is more 
important than ever. One key technique used in this 
respect is the employment of advanced antenna arrays at 
the base stations, combined with the use of adaptive 
beamforming. Uniform circular arrays are a good 
candidate for playing the key role in this scenario, as they 
provide 360 degrees of coverage in the azimuthal plane. 
This paper presented the Chebyshev, modified-Chebyshev 
and Taylor UCAs whose patterns are independent of the 
steering angle and their sidelobe level is controllable. 
Deploying these arrays at the base stations of WCDMA 
cellular systems significantly reduces the ratio of intercell 
interference to intracell power, compared to the case of 
the cell being served by an omnidirectional antenna. The 
three types compared, it was shown that the Taylor UCAs 
lead to the smallest ratio of intercell interference to 
intracell power. They are also the most directive for large 
number of array elements. The Chebyshev UCAs always 

have the narrowest beam, whereas the modified-
Chebyshev UCAs generate the least number of sidelobes. 
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