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Abstract: In this study, the VC-Dimension of a
neural networks are presented. Especially, single
layer feed-forward neural network is used. It is well
known that VC-dimension of neural networks has
been giving upper bound of neural network to learn.
The neural networks that are an acyclic set of edges
are considered. Signum function is used as threshold
function.
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1. Introduction

The VC-dimension is mapping that describes
the separating capacity of a collection as sets; see
Sontag (1992), Vapnik and Chervonenkis (1971) and
Wenocur and Dideley (1981). In other words, the VC-
dimension is a parameter that qualifies how well a
collection of sets can implement an arbitrary signed
set. As the collection of sets can be derived from
functions, the VC-dimension is a useful qualifier for
classification capability of artificial neural networks.

If we could the VC-Dimension of a neural
network, then we could determine an upper bound on
the number of examples we would need to see before
the neural net is trained to classy according to a target
concept.

The structure of paper is following; In
section 2 VC-Dimension of somewhat restricted set
of neural networks has been found. Section 3
describes asymptotic error rates of neural networks,
and finally, conclusion has been offered.

2. A method finding VC-Dimension

First, we will consider a neural network that consists
of an acyclic set of edges and a set of computation
nodes. Each node computes some arbitrary function
from its real-valued inputs {£}, but there is only one
output node for the entire network. This may seem to
be restrictive, but the computation nodes in this
mode] are quite general, in that the nodes aren’t
limited to using the weighted sum of their inputs.

2.1. Basic Definitions

First all, our notation is changing slightly; C
represents a concept class over an instance space X,
both of which may now be infinite. We use S to
represent a finite sample chosen from X. We will now
define a function which characterises the response of
the concepts in C to a given sample S.

Definition 2.1. For any concept class ¢ over instance
space X. For all finite samples ScC.

Let F, be the class of functions computable at node

i, and let F be the class of functions computed by
entire net as the vary F,. Then given a sample § of
size m , we define

[Te®)={c)S:ceC}.

It is important at this point to give some kind of
explanation of what this mean, especially since the set
notation can be a little confusing. Especially
[T <(S) coltects the set of all subsets of the sample

set S which are made positive by some concept ¢ in
the concept class C. Thus cnS represents the
elements of S that are labelled positive by a concept

¢, and H ¢(S)is all such subsets for all concepts.

Definition 2.2. If | | ] ¢(S) =2 then shattered by C.

In other words, fix a sample and a concept class; if
the following is true for every possible subset of the
sample, then concept class shatters the sample: the
subset, is made positive y some concept in the
concept class, and concept does not make any other
element of S positive. That is, S is shattered by C if C
realises all possible dichotomies of s.

Definition 2.3. The Vapnik-Chervonenkis dimension
of C, denoted VCppy(c) is the largest cardinality d
such that there exists a sample set of that cardinality
{S|=d that is shattered by C. If no largest cardinality
exists then VCppy(c)= ©

According to upper definitions; we can give
new definitions.
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Ap(5)=The number of dichotomies
induced by F on S andm is sample size.
Ap(m)= mAF(S)

(Ap(s) =1Is what we called [ [¢(S), and
A, (m)is what we called [Jc(m). If a neural

network has N nodes, then we have the following
result:

Theorem 2.1.
Define

d=Y" VC -dim(F,).Then

Ay (m)< [T As (m )S(sz)

i=}

Proof:

For a given sample S, the maximum number of
labelling as the F,vary is the number of ways of
choosing the net’ s output based on its inputs.
Certainly we can’ t have more labelling than the
number of ways of choosing each node’ s outputs
independently; we may have fewer if some choices

induce the same labelling. Each node has AF,(m)
ways of labelling S'. So the whole network has at
most AF,(m)AF,(m)...ways of labellingS . This
gives the first inequality in the theorem.

To establish the second inequality, define. Then
d= Z” ; by definition.

If Fhas finite VC-Dimension k&, then

k
em
AF(m)S(T) . Applying this to each F,
individually, we have that

foimf=]

This product is maximised when all the
d, are equal; when d; =d/ N forall i. So,

Meremf1(2)"

216

d
[ em
(d/NJ
For the remainder of this section, we will
restrict ourselves to computation nodes that compute
linear threshold functions. That is, a node outputs +1
if the weighted sum of its inputs is greater than some
threshold and -1 otherwise. The following coroliary

gives an upper bound on the VC-Dimension of such
networks.

Corollary: Let E be the number of edges in a neural
net, and W=E+N the total number of weights (one per
edge plus the threshold). If N22, then

A.(m)< (M)W for m>W
LA ~ .
VC — dim(F) < 2W log(eN)

Proof:

It is known that the VC-Dimension of the class of
half-spaces in R" is n+1. Since each node computes
linear threshold in ®* ,where k ,s the number of
inputs to the node, the class of functions computed by
a node has VC-dimension at most k+1.

us
d=Yd =) VC-dm(F)<E+N=W.
Applying theoram1 gives inequality.

If we take m > 2W log(eN), then we can show
that

w
(Nem) <om
w
As long as N22. Using the first part of the corollary,

this had shown that A (m) < 2™ . Thus no set of m
points is shattered, so F has VC-Dimension less than
m

Corollarylfmzﬂl 33—281’- and we can find
€

choice of weights that correctly labels at least a
fraction 1-e/2 of the main training examples, then
with probability at least 1-8"°", the net will correctly
classify at least a fraction 1€ ofexampl&s drawn from
the same distribution as the training examples.
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Theorem 2.2 : The class of one hidden layer linear
threshold nets with k-hidden nodes and n inputs has

k
VC-dimension at least Z[E:|n N

Note that this bound is approximately equal
to the total number of weights if the net is highly
connected (n edges from the inputs to each of the k
hidden nodes, plus one edge from each hidden node
to the output node, for a total of k (n+!) in a fully-
connected net).

We never mentioned back propagation in
discussion above. The results hold for an arbitrary
training algorithm; in particular, back propagation
performs better in practise than these results would
suggest.

3. Asymptotic error rates of neural networks

In this chapter, we are interested in
determining the error rate of a neural network on a
sample as size of the sample and the number of
hidden nodes in the net increase. We would like to
compare to our actual (or empirical) error rate with
the optimal error rate ( also known as the Bayes risk)
The result below are from [3].

In the discussion below we will consider
neural networks with k-hidden nodes in a single
hidden layer and d fixed inputs. There is a single
output node that outputs either 0 or 1. Each node
computes a step function o of the weighted sum of its
input:

|1 ifx2p
77 1-1 if x<b,

We label each edge from an input to a hidden
node by a;, and each edge from a hidden node to the
output node by c;,. Considering a, b and ¢ as column
vectors, we can write the output of the net as a
function f of its inputs and weights:

k
f(x,a,b,C) = Zcia(ai]'x-"-bi)-'—co

i=1

Here x is a vector of the inputs, and c, is a constant to
the output node.

We can use these neural nets in situations where the
inputs don’ t completely determines a classification.
For example, suppose that the inputs are
characteristics of a lung X-ray and the output should
predict whether or not a tumor is present. Under such
circumstances, there is only a probability (not a
certainly) of an output being correct given a set of
inputs. It’s easy to see the best possible classification

rule is the one that agrees with the true outcome most
of the time. Let (X,Y) be input/output pair. Then we
can write the optimal classification rule as;

") 0 ifPr{f=0|X=x}21/2
S 1 P =1|X=x}<1/2
Any given neural network correspondence to
some classification rules, given by the mapping of its
inputs to its outputs. Let g, be the classification rule
of a neural net after it has seen n examples. This rule
will have a certain error rate on the set of training
examples denoted by L(g,), and another error rate on
the set of all examples in the sample space, written
1(g,). These can be written formally as;

L(g)=Pr{ g (O=Y|
sequence}
1(g)"EM(g))=Pr{ g, (X) £Y}

The optimal classification rule g* has the minimum
possible error rate on the whole sample space. We
denote this rate by L*, which is also known as the
Bayes risk of the sample space.

some particular training

Definition 3.1. A sequence g, of classification is
universally consistent if

limr(g,)=L
n—»o
Regardless of the distribution on the sample space X.

A sequence g, of classification rules is strongly
universally consistent if,

limL(g,)=L

With probability one, regardless of the distribution on
the sample space X.

Strong universal consistency does indeed imply
universal consistency: if a sequence of values chosen
from some distribution always converges to a certain
value, then the sequence of expected values chosen
from the same distribution converges to the same
value.

Let g*,, denote the optimal neural net with k-hidden
nodes after the first n examples.

Theorem 3.1.
If number of the hidden nodes k satisfies £k —> o
klogn

and ——— —> 0as n — oo, then with probability
n

one, lim L(g, ) =L’.

This theorem is somewhat useful in that it provides a
guarantee of strong universal convergence, even
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when no neural net is a perfect classifier. However,
theorem 1 says nothing about theorem the rate of
convergence; the following theorem is more useful in
practise;

Theorem 3.2,

’ n
If k= ] then
dlogn
1
- = (282

This theorem tells you roughly how fast the optimal
neural net k hidden nodes after examples converge to
the optimal rate. Notice that the rate of convergence
has a constant exponent; in particular, it doesn’t
depend on the number of inputs d.

5. Conclusion

In this paper, we considered VC-dimension
of neural networks. Some theorems and its proofs
have been given. To mean finding VC-dimension of
neural networks, most suitable neural networks is to
mean to use. For this reason, especially, after this
time, if VC-dimension of adaptive neural networks
can be found then networks having minimum edge
and nodes can be used. This satisfies minimum cost to
user.
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