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Abctract: In this srudy, the VC-Dimension d a
neural networks are presented. Especially, singfe
layer feed-foruard neural network is used. It is w€ll
known that VCdimension of neural nctworks has
been giving uper bound of neural network to lean"
The neural networks that are an acyclic set ofedges
are aonsidered. Signum function is used as thresbold
function.
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1. Introduction

The VCdimension is mapping that describes
the separating capacity of a collection as sets; see
Sontag (1992), Venik ard Chervonenkis (1971) and
Wenocur and Dideley (lgtl). tn other q/ords, the VC-
dimension is a paraneter tlut qulifies how well a
collection of sets can implcment an aftitnry signed
set. As the collection of sets can be derived from
functions, the VCdinmsion is a uscfirl qualifier for
classification capability of artificial rcunl netrvo*s.

If we could the VC-Dimension of a neural
network, then we could determine an upperbound on
the number of examples we would need to see before
the neural net is trained to classy according to a target
concept.

The structure of paper is foltowing In
section 2 VC-Dimension of rcmewhat resricted set
of neural networls has been found- Section 3
describes asymptotic error rates of neural networts,
and finally, conclusion has been offered.

2. A method frnding VC-Dimengion

First, we will consider a neural network that consists
of an acyclic set of edges and a set of computation
nodes. Each nod€ computes some arbitrary frnction
from its reat-valued iryuts {t}, but there is only one
output node for the entirc network. This may scem to
be restrictive, but the computation nodes in this
model are quite general, in that the nodes aren't
limited to using the weighted sum of their fuputs.

2.1. Badc lDefinitions

First all" our notation is changing slig[tly; C
r€prcs€nts a concept class over an instance space X,
both of which may now be infinite. We use S to
represent a finite sample clrcsen from X. We will now
define a functim which characterises the rcsponse of
the concepts in C to a given sample S.

Definition 2.1. For any conae,pt class c over in$ance
space X. For all finite saryles SgC.
I-et 4 be the class offirnctions computable at node

i, and let Fbe tlre class of firnctions computed by
entire net as the vary{ . Then given a sample ,S of
siznm,wedefine

fl"(s) = {"0s :c eCl.
It is important at this point to give some kind of
erElanation of what this mean, especially since the set
notation can be a little confising. Especially

fl c(S) ooUects the set of all subsets of the sample

set S which are made positive by some conept c in
the concept class C. firus crrS represcnts the
elements of S ttnt are labelled positive by a concept

c, ana fl c(S) is al such subser for all concepts.

Dclinition z.Z r I ll c(S) 1=2tst ,n* shattcred by C.

In other words, fix a sarrple and a concept slass; if
the following is true for every possible sbset of the
sample, th€n conc€pt class shatgs the sanple: the
subset, is nade positive y some concept in the
concept class, and concept does not rnalce any other
element of S positive. That is, S is shattercd by C if C
realises all possible dichotomies ofs.

Delinition 2.3. The Vapnik4hervonenkis dimension
of C, denoted VCpnu(c) is the largest cardinatity d
such that there exists a sample set d tlut caCinatity
lSl=d ttat is sbattered by C. If no largest cardinality
exists then VCpx,(c)= co

According to upper definitions; we can give
new definitions.
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A" (s) = 16s number of dichotomies
indudby Fon Sandm issarryle siza

Ar(m) = rPFx A"(S)
t'ltl=n

t Ar (s) = Is what nc callcd fl c(S) , ura

A"(n)is what w calbd flc(z). If a nanal

rdn/o* has Ir nodcs, thcn na hara tbc following
reoilt:

Theorcm 2"1.
Define

d =Z:=.VC-dim(4).nrcn

* ( Nem\oA,(m)= fIa,(r) = (.?J
Proof:
For a given sample .S, the rnaximum number of

labetling as ttre {vary is the number of rvays of

choosing th€ n€t' s outprtr basd on its fuputs
Certainly we can' t have more labcllfuU than tlrc
nurber of ways of choosing each node' s outputs
inde,pcndcrtly; we may have fewer if some choices

induce thc same labelling Each node tt"s A4(z)

ways of labclling .9. So thc whole networt has at

most Afi(n)LFr(m)...ways of tabelling.S. rnis
gives the first inequality in thc theoresl

To esablidr the scaond inequality, define. Then

d =Zl=ra,bydcfinition

If F tras finite VC-Dimension k , then

. (em\'
M(m\<l+ | . ,lpplyrng this to each Fi

l k  )
individually, urc lrave that

r il ( ---\d'

ftonr",r =ElT)
This product is naximiscd $,hen dl the

d, are equal; when d; = d I N for all i . So;

fton,,, =U(#)''.

( t  Y= l -  I
\ d tN  )

For the runaindcr of this section, we will
restrict orsch'es to aomputation nG that conpute
linear thrcshold firnstions That is, a node outtrns +l
if the urei$t€d sum of its iryuts is grcatcr thrr soln€
threshold and -l oth€rwise. Tbc following corollary
gves an qper bound on the VC-Dimension of srrch
netqorls.

Conollery: I€t E bc thc nurnber ofodges in a neural
net, and W=E+N thc total numbcr of weiglns (one per
edge plus the thrcsholo. If N:2, then

.a,(n)=(@)"o,**

VC - d;rm(n <Zr/los(eN)

Proof:

It is known rhat th€ VC-Dimension of the class of
hatf-spaces in n'is rrl. Since each node computes
tfurcar ttucslrold in Ek ,whcrc k ,s thc munber of
inputs to the node, tbe class of fimctions computed by
a nodc has VCdimension at most k+1.
Thrs

d =2d, =ZVC -dim(4) s E+ N =w.
Applying theoran I giyes inoquality.
If we take m>27log(e/V), then *r can show

rhat
. , -  r l 7

I Nem | .z^
\w )
As long as N22. Using the ft$ pafi of thc oorollary,

this had shown that Lr(n) < 2'. Tbus no set of m
points is sha$erc4 so F has VC-Dimensim less than
m.

corclfery rf m232W bg32V md urc can find
E E

choice of weights that cor€ctty labels at least a
fraction l+12 of the main.gaini4g cxamples, their
with probability at least l€'''", tbe na will correctly
classify at least a fraction l+ of examples drawn from
the same distribution as tbe uaining examples.

216
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Theorem 2.2 z Tfu, class of one hidden @er linear
tbrestrold nets with k-hidden nodes and n intrrts has

t_el
VCdimension at least 2l L tn.

t2J
Note that this bound is approximately equal

to the total number of weights if the net is highly
connected (n edges ftom the inputs to each ofthe k
hidden nodes, plus ure edge from each hidden node
to the output node, for a total of k (n+l) in a fully-
connected net).

We never mentioned back propagarion in
discussion abwe. The results hold for an arbitrary
training algorithm; in particular, back propagation
performs befter in practise than these results would
suggest.

3. Asymptotic error rates of neural networks

In this chapter, we arc interested in
determining the error rate of a neural network on a
sample as size of the sample and the number of
hidden nodes in the net increase. We woild like to
comparc to our actual (or empirical) error rate with
the optimal error rate ( also known as the Bayes rislc)
The result below arc from [3].

In the discussion below we will consider
neural networks with k-hidden nodes in a singfe
hidden layer and d fixed inprts, There is a single
output node that outputs either 0 or l. Each node
computes a step function o of the weig[ted nrm of its
input:

I  t  , f  t>b ,
o=<

L - l  i f x cb ,
We label each edge from an input to a hidden

node by a, ani each edge from a hidden node to the
output node by ci,. Considering a, b and c as column
vectors, we can write the output of the net as a
function f of its inpus and weights:

tc

f  (x,a,b,c) =lc,o(al x +b,)+co
i=t

Here x is a vector of the inputs, ard co is a constant to
the output node.
We can use these neural nets in sinrations where the
inputs don' t completely determines a classification.
For example, suppose that the iryuts arc
characteristics of a lung X-ray and the output should
predict whether or not a tumor is present Urder suctt
circumstances, there is only a probability (not a
certainly) of an output being corcct given a set of
inputs. It's easy to s€e the best possible classification

rule is the one that agr6 with the tnrc outcome most
of the time. Let (XY) be iryrdorilprf pair. Then we
can write the optimal classification rule as;

e.(r)  = {o 
i f  Pr{Y =ol  X =xl>r l2

L l  i f  Pr {Y  = l lX  =x l< l /2
Any given neural networt onesponde,nce to

some classifcation rules, given by the m4ping of its
inputs to its outputs. Let g; be the classification rule
of a neual net after it has seen n oramples, This nrle
will have a certain effor rale on the set of training
examples denoted by L(g"), and another error rate on
the set of all examples in the sanple space, wrinen
rGJ. These can be written forrrally as;

L(&J=Pr{ & (XFYI some particular training
sequence)
r(&FE(t(cJ)=It{ & (Xl *Y}

The orptimal classification rule g* has the minimum
possible error rate on the whole sample space. We
denote this rate by L*, which is also known as the
Bayes rish of the sarryle space.

Definition 3.1. A sequence g of classification is
universally consistent if

I\ '@,)= t
Regardless of the distribution on the sarryle space X.
A sequence g; of classification rules is srongly
universally consistent if,

tigt(s,\= t
With probability one, r€gardless of the disfribution on
the sample space X.
Strong univenal consi$ency does ideed irryly
universal consistency: ifa sequence ofvalues chosen
from some disribution always converges to a c€rtain
value, then the sequence of eryected values chosen
from the same distibution cotrverges to the same
value.
I*t gtr" denote the optitnal neural net with k-hidden
nodes after the first n examples.

Theorcm 3.1.
If nurnber of the hidden nodes k satisfies k +q

* 
klogn -> 0 as r, -> o, then wirh probability

n

one, |igZ(gi)= t .
This theorem is somewhat usefui in that it provides a
guanntee of stnong universal convergen@, €ven
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when no neural net is a perfect classifier. Honrcver
thcorem t says nolhing about theor€m te rate oi
cowergpnoe; tbe following theorem is molt usefut itr
practise;

Theorem 32.

th€n

/  r \

r(s;.)-t -olr4-@)' I'  
l \  z  )  |\ . /

This theorem tells yor roryhly horv frst the optimd
neural net k hidd€n nodes aftcr examplc oomrerge to
the optimal Ete. Notice thet thc ratc of cowcrgence
has a constant exponeoq, in partiadar, it docsn't
depend on the nurnbcr ofinPuts d.

5. Conclusion

In this paper, wc considcred VCdimension
of neural networks. Sonre theorems and its prmfs
have been given To mean fudittg VCdinension of
naral ncwortq mosl suitsbl€ neural netwo*s is to
mean to use. For this reason, ceeciatly, after this
time if VCdimension of adapirrc neural n*rcd<s
can be found thcn networks having mininum cdge
and nodes can be used. This satisfies minimum cct to
user.
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