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Abstract 
 

In this paper robust motion control of a four wheel drive 
skid-steered mobile robot (4WD SSMR) is presented. We 
have developed a motion control system where a kinematic 
trajectory tracking controller based on the vector field 
orientation (VFO) strategy and a robust dynamic velocity 
controller based on the sliding mode control (SMC) 
technique and the computed torque method (CTM) are 
combined. Asymptotic stability for a class of reference 
trajectories is guaranteed by the VFO method while the 
stability of the velocity controller is based on the Lyapunov 
theory. In addition to the original VFO method a multi 
parameter orienting control is used. A 4WD SSMR is 
designed in a three dimensional (3D) realistic simulation 
environment to test the performance of the motion control 
system developed. Simulation results have shown the 
stability and robustness of the motion control system even 
under heavy perturbed conditions and the proposed multi 
parameter orienting control strategy has the advantage of 
smoother path tracking. 

 
1. Introduction 

 
Skid-steered mobile robots (SSMR) are well-known for their 

robust structure which is suitable for outdoor usage especially 
on rough terrains. SSMRs are differentially driven vehicles 
(DDVs) because they are rotated by differential speeds or 
torques on left and right side wheels. SSMRs do not have a 
mechanical steering system and lateral skid is necessary for the 
vehicle to change its heading direction. Because of this nature of 
skid-steered vehicles, wheel-ground interaction forces play an 
important role in the vehicle dynamics. The most important 
ones, lateral friction forces due to sliding of wheels on ground 
may be too high on a hard terrain such as an asphalt road. As a 
result it may become too difficult to control the yaw rate of the 
vehicle and require high torques generated by the vehicle 
actuators. Hence power loss due to high friction forces is 
inevitable. 

Motion control or trajectory tracking for WMRs is often 
studied considering only kinematics omitting the dynamic 
properties of the vehicle assuming that wheels track commanded 
velocities perfectly and they do not slip while rolling. As a 
result it is assumed that the nonholonomic constraints of the 
vehicle are satisfied all the time during robot motion such that 
one can calculate wheel angular velocities for a desired robot 
motion. In fact parameter and non-parameter perturbations, 
external disturbances, modeling errors due to simplifying 
assumptions and unmodeled system dynamics have impacts on 
the robot motion directly or indirectly disturbing the slip-skid 
phenomena. Hence the wheels to body motion kinematic model 
does not hold all the time causing tracking errors. So in this 

study we consider a dynamic model based control strategy to 
robustly stabilize a class of reference trajectories which rejects 
aforementioned effects. 

In 1996, Fierro and Lewis introduced a combined kinematic 
and torque control framework using backstepping technique to 
join robot kinematics into dynamics allowing one to apply 
control approaches from model dependent computed torque 
method (CTM) to robust sliding mode control (SMC) technique 
[1]. In 1999, Caracciolo et al. studied the dynamics of a 4WD 
SSMR offering a nonholonomic operational constraint on the 
instantaneous center of rotation (ICR) of the vehicle [2]. This 
additional nonholonomic operational constraint acts like an 
outer-loop controller term preventing excessive skidding of the 
vehicle by limiting the vehicle’s lateral velocity with the yaw 
rate [3, 4]. In 2004, Kozlowski et al. redefined the kinematic 
and dynamic model of 4WD SSMR in [4] and [5] based on the 
model given in [2]. Later Michałek and Kozłowski introduced a 
novel VFO feedback control method for trajectory tracking of a 
DDV in [6]. Also Michałek et al. extended the VFO control 
method for the case of limited skid-slip phenomena in [7]. In 
2008, a decoupling design approach using two new torque 
variables for controlling the linear velocity and yaw angle of a 
4WD SSMR platform using SMC technique without the so-
called operational constraint is introduced [8]. 

Here we propose a robust motion control system for the class 
of 4WD SSMR platforms based on the backstepping kinematics 
into dynamics framework and VFO trajectory tracking control 
method while controlling the vehicle’s linear and angular 
velocities using a CTM plus SMC technique considering both 
system dynamics and kinematics. 

A 4WD SSMR platform is being developed at the robotics 
laboratory in our department. The state of the art computer 
aided design (CAD) model of the mobile robot platform is 
shown in Fig. 1. 

This paper is organised as follows. First the mathematical 
model of the vehicle is derived and next, a model based robust 
motion control system is designed. Then simulation results are 
given. Finally simulation results are analyzed and final remarks 
are made. 
 

 
 

Fig. 1. 4WD SSMR platform 
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2. Mathematical Model 
 

The vehicle model is derived based on the assumptions given 
in [2] and [4] except that the kinetic energy of wheels is not 
neglected here. We consider only planar motion. Each wheel-
ground contact is a single point and normal forces acting on the 
wheel-ground contact points are constant depending on the mass 
of vehicle and gravity. We assume that wheels do not slip while 
rolling. Wheel-ground interaction forces are represented with a 
conventional coulomb friction model. Lateral friction is due to 
sliding and longitudinal friction is due to rolling of wheels on 
the ground. The vehicle body is represented with a point mass 
located at the center, near the front side of vehicle. The wheel 
torques are distributed equally on each side and servo drives 
track torque commands perfectly such that the electric drives’ 
dynamics can be neglected. 
 
2.1 Kinematics 
 

Kinematics of mobile robot platform is illustrated in Fig. 2. 
The vehicle configuration vector in global coordinate frames is 
 

   3T
q X Y     (1) 

 
where X, Y and θ are the position and orientation of vehicle 
respectively. The transformation between the local velocities 
defined in the local coordinate frames attached on the vehicle’s 
center of mass (COM) and the generalized velocities is 
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COM is d  (0, b) distance away from the center of 

geometry (COG). ICR is located on the axis that intersects COG 
as shown in Fig. 2. In this case the nonholonomic operational 
constraint that limits lateral skid is defined as [2] 
 

 0yv dw   (3) 
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Fig. 2. 4WD SSMR kinematics 

 
 

Fig. 3. 4WD SSMR dynamics 
 

Then we can rewrite the Eq. (2) in the form below where 
S(q)  Թ3x2 is a matrix and   Թ2 is called as the control input 
vector at kinematic level defined as 
 

  q S q   (5) 

  
cos sin
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d
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,  Txv w   (6) 

 
and since the columns of S(q) are always in the null space of 
A(q) the following expression is satisfied [2, 4]. 
 

 0
T T

S A   (7) 
 
2.2. Dynamics 

 
Dynamics of mobile robot platform is illustrated in Fig. 3. 

First we introduce the left and right side forces then we describe 
the wheel dynamics 
 

 2L fl rlF F F  , 2R fr rrF F F   (8) 

 w wI w DF   (9) 

 
where Iw is the wheel inertia, ww = [wfl wrl wfr wrr]

T  Թ4 is the 
wheel angular speeds vector,  = [fl rl fr rr]

T  Թ4 is the 
wheel torques vector, F = [FL FR]T  Թ2 is the force vector and 
D  Թ4x2 is the force-torque conversion matrix defined as 
 

 
1 1 0 0

0 0 1 12

T
r

D 
 
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 (10) 

 
where r is the wheel radius. Next the equations of robot motion 
in global coordinates follow 
 

    cos cos sinL R x ymX F F f f       (11)

    sin sin cosL R x ymY F F f f       (12) 

  L R rI c F F M     (13) 
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where m is the vehicle’s mass and I is the vehicle’s inertia about 
z-axis, fx and fy are the rolling and sliding friction forces 
respectively and Mr is the resistive moment about z-axis. 
Rolling friction forces are too small when compared to sliding 
friction forces in ideal case. A realistic model for rolling friction 
in case of slip can be found, for example in [3]. We define the 
friction forces for only front-left wheel as follows 
 

  sgnflx x fl flxf N v ,  sgnfly y fl flyf N v  (14) 

 
where normal forces acting on the wheel-ground contact points 
due to gravity are calculated as 
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and finally the resistive moment is calculated as follows. 
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The general form of the vehicle dynamics including the 

nonholonomic constraint using Euler-Lagrange principle and 
introducing an additional vector for representing disturbances is 
 

       T
dM q q R q F B q F A       (17) 

 
where M  Թ3x3 is the mass and inertia matrix, R  Թ3 is the 
vector of resistive forces and torques, Fd  Թ3 is the vector of 
disturbances, B  Թ3x2 is the input matrix, F is called as the 
control input at dynamic level previously defined, A is the 
constraint vector as in Eq. (4), and λ is the vector of Lagrange 
multipliers. 
 

  
0 0

0 0

0 0

m

M q m

I



 
 
 
  

,  
cos cos

sin sinB q

c c

 

 



 
 
 
  

, 

  
cos sin

sin cos

x y

x y

r

f f

R q f f

M

 

 



 

 
 
 
  

  (18) 

 
Taking the time derivative of Eq. (5) yields 

 

    q S q S q     (19) 

 
and using the relationships Eq. (5), Eq. (7) and Eq. (19) one can 
convert the dynamic system in Eq. (17) to 
 

 dM C R F BF      (20) 
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T
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T
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T
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3. Motion Control 
 

Motion control of a vehicle is often regarded as trajectory 
tracking control. Here we regard it as the motion control system 
that has two sub-systems, that is, trajectory tracking controller at 
kinematic level and velocity controller at dynamic level. Such a 
control system is illustrated in Fig. 4. 

 
3.1. Control Problem 

 
The control objective is to asymptotically stabilize the 

trajectory tracking error at origin. Here we restrict the input 
trajectories to be persistently exciting and admissible. Let the 
reference trajectory be denoted by qd then the trajectory tracking 
error is e(t) ؜ qd(t) - q(t). Now define the admissible local 
velocity vector ηd(t) ؜  [vd(t) wd(t)]

T then the so-called 
persistently exciting reference trajectory is defined as 
 

       d d dq t S q t t  , ( ) 0dv t   (22) 

 
The trajectory tracking control problem is to find a smooth 

velocity control [1] 
 

    , ,c dt f e K   (23) 

 
such that e(t) → 0 as t → ∞, where K is the controller design 
parameters vector. 

 
3.2. Trajectory Tracking 

 
A velocity control that achieves tracking for a DDV is given 

in [1] 
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where k1, k2, k3 > 0 are controller design parameters and ex, ey, 
e are the components of the error vector in local coordinates. 

Another approach, VFO is a motivating control technique to 
calculate such velocity commands for DDVs. The reader can 
refer to [6] (an application of VFO to a DDV) and [7] (an 
extension of VFO in the case of skid-slip phenomena) for more 
about VFO. In VFO strategy the trajectory tracking control 
problem is divided into two subtasks, convergence of position 
and orientation to their desired values. The vehicle is driven by 
the pushing control vc with the careful pushing strategy while 
the orienting control wc is responsible for matching the 
vehicle’s heading vector with the position convergence vector. 
Such tasks are accomplished with the choice of proper 
convergence vector field which defines the instantaneous 
convergence direction and orientation for the vehicle. 
 

 
 

Fig. 4. Motion control system 

ELECO 2011 7th International Conference on Electrical and Electronics Engineering, 1-4 December, Bursa, TURKEY

396



 

For control purposes with VFO, we define a new position 
vector qc ؜ [Xc Yc]

T א  Թ2, that is COG, then the new position 
tracking error becomes ec ؜ qcd  - qc where 
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Definition of the so-called convergence vector field is hc ؜ 

[hc
* ho]

T א Թ3 where hc
 Թ2 defines the convergence direction א *

and orientation of qc sub-state and ho defines the convergence 
orientation of θ variable 
 

  * *
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where S1

*(d) א Թ2 defines the instantaneous heading direction 
of the reference vehicle, ea is the auxiliary angle error and a is 
the so-called auxiliary angle 
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and we define the pushing and orienting control commands. 
 

 
*

cosc c av h e , c ow h  (29) 

 
A geometrical VFO tracking scheme for kc=k1=1 is 

illustrated in Fig. 5. For system in Eq. (5) to track a reference 
trajectory in Eq. (22) it is sufficient to drive the vehicle with the 
velocity control ηc(t) ؜  [vc(t) wc(t)]

T. This is guaranteed by the 
VFO method. The orienting control in Eq. (26) is similar to a 
PD plus control but the derivative parameter is fixed to one. 
Hence adjusting the controller performance is limited to a single 
proportional parameter. Here we propose a PID plus multi 
parameter orienting control defined as below. 
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Fig. 5. VFO trajectory tracking scheme 

 
 

Fig. 6. Velocity control with SMC technique 
 

3.3. Velocity Control 
 

Now we need to construct a robust velocity control system 
that will track the desired velocities to complete the motion 
control system in Fig. 4. The block diagram of velocity control 
system is illustrated in Fig. 6. Applying the following nonlinear 
feedback to the system in Eq. (20) we have 
 

  1
u M BF C R    (31) 

 ( , , )u n q      (32) 

  1

w wDB Mu C R I w       (33) 

 
where n ؜  [n1 n2]

T א Թ2 is the vector of uncertainties and the 
control law is 
 

 du K e       (34) 

   2T
v we e e   ,   2T

v w      (35) 

 
where K א Թ2x2 is a design matrix, e = d -  is the velocity 
error and  is the sliding mode control law. Then one can write 
the velocity error dynamics 
 

  e K e n        (36) 

 
The Lyapunov candidate V = (ev

2+ew
2)/2 is zero only for e = 

0 and V ≥ 0 for all e א Թ2. Taking the time derivative of V and 
using the Eq. (36) yields 
 

  T T
V e K e e n         (37) 

 
and we define the sliding surface s ؜ [sv sw]T א Թ2 and the 
sliding mode control law as 
 

  Tv ws V e e e      (38) 

  sgnv v vs  ,  sgnw w ws   (39) 

 1v n  , 2w n   (40) 

 
where v and w are the linear and angular velocity sliding mode 
control gains respectively chosen high enough to reject the 
disturbances and uncertainties in the system. It is clear that Vǚ  is 
zero only for e = 0 and Vǚ  ≤ 0 for all e א Թ2 so the asymptotic 
convergence of e to zero is guaranteed. 
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4. Simulation 
 

A 4WD SSMR is modeled in a 3D realistic environment 
using MD-ADAMS View, Tire and Road modules. The 
controller is implemented with MATLAB-Simulink interface. A 
circular reference trajectory is applied to test various control 
systems. The reference vehicle starts at location (2.5m, 0m) with 
yaw angle d(0)=/2rad and moves along a circle with constant 
speeds. We assigned the vehicle parameters as m=150kg, 
I=30kgm2, x=0.003, y=0.6, r=0.2m, a=0.2m, b=0.3m, 
c=0.45m, d=0.05m, the trajectory tracking controller parameters 
kc=1, k1=5, k2=1, k3=1 and the velocity controller gain K=[10 0; 
0 10]. We assigned the sliding mode gains with a formula, 
w=vcm/I, v=100, w=225. In order to reduce the chattering 
effects we used low-pass filters, rate limiter and saturation 
blocks for F, v and w. Figure 7 shows the results for VFO and 
CTM while Fig. 8 shows the results for VFO and SMC based 
motion control system. In Fig. 8a trajectory tracking, in Fig. 8b 
the desired, commanded and actual velocities and in Fig. 8c the 
left and right side control forces are shown. 
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Fig. 7. VFO and CTM with 30% parameter perturbation 
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Fig. 8. VFO and SMC with 87.5% parameter perturbation (a) 
Trajectory tracking (b) Linear and angular velocities (c) Left 

and right side forces 

5. Conclusions 
 

In this paper we have developed a robust motion control 
system which consists of two sub-systems. In kinematic level 
VFO trajectory tracking method with orienting and pushing 
strategy is used. In dynamic level robustness is achieved by 
using CTM plus SMC technique which fully rejects 
disturbances, modeled and unmodeled system dynamics. A PID 
plus multi parameter orienting control is used instead of single 
parameter dependent one in the original VFO method. A 4WD 
SSMR is designed in CATIAv5, Siemens NX6 and simulated in 
MD-ADAMS multi body dynamics engine. Motion control 
systems are implemented in Simulink and interfaced with MD-
ADAMS. Simulation results proved the stability and robustness 
of the motion control system for persistently exciting admissible 
reference trajectories even under heavy parameter uncertainty 
conditions. We also achieved a smoother path tracking by using 
the multi parameter orienting control. 
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