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ABSTRACT
The paper presents the determination of critical impulse
breakdown voltage and standard deviation using an
Artificial Neural Network (ANN) algorithm. The results,
obtained using ANN method, are compared with those of
conventional methods. The algorithm performs fast and
gives acceptable results.

1. INTRODUCTION
There are many publications those describe the methods
to determine the critical impulse breakdown voltage (50%
breakdown voltage) and standard deviation from
breakdown probability data for a given insulation [1-4].
Almost all of these papers assume that; when the voltage
applied to the test object is changed, the probability of
breakdown will also change. The relationship between the
applied voltage and its breakdown probability is therefore
approximated by the cumulative normal distribution
function.

The methods about to determine critical breakdown
voltages and standard deviations, described in the
literature, are generally based on the up and down method
[5-10]. And some of them utilize the concepts of the
graphical techniques using normal probability paper or
maximum likelihood [4] to estimate the parameters of
breakdown probability distribution. Another method is
based on curve fitting method of first order, by least
squares method [11-15].

In this study, critical breakdown voltages and standard
deviations are determined by training an Artificial Neural
Network (ANN). Using ANN algorithm for the problem
instead of conventional methods, one can reach to the
results very fast, without computational difficulties. After
the ANN trained for once, it can give the breakdown
voltage and standard deviation of any breakdown
probability.

For the last couple of years extensive research works has
been carried out on the application of ANN in various
fields. So, the literature on ANN is growing very rapidly.

ANN have been adapted successfully on a very wide
range of applications including machine vision, speech
processing, sonar analysis, radar analysis, pattern
recognition, robotic control etc. In electrical power
systems, ANN have been used accurately for load
forecasting, security evaluation, capacitor control, alarm
processing etc. In high voltage techniques, applications of
ANN have been reported for pattern recognition of partial
discharges, optimization of electrode and insulator
contours, and lightning prediction [16-22].

In this study a new approach to determine critical impulse
breakdown voltage based on ANN is presented. The
multilayer feedforward network is used for supervised
learning with resilient back propagation.

2. ARTIFICIAL NEURAL NETWORKS
An artificial neural network consists of a set of processing
elements called neurons that interact by sending signal to
one another along weighted connections [22, 23]. The
connection weights, which can be determined adaptively,
specify the precise knowledge representation. It is not
possible to specify the weights beforehand, because the
knowledge is distributed over the network. Therefore, a
learning procedure is necessary in which the strengths of
the connections are modified to achieve the desired form
of activation function.

The learning procedure is divided into three types:
supervised, reinforced and unsupervised. The type of
error signal used to train the weights in the network
define these three types of learning. In supervised
learning, an error scalar is provided for each output
neuron by an external ‘teacher’, while in reinforced
learning the network is given only a global punish/reward
signal. In unsupervised learning, no external error signal
is provided, but instead internal errors are generated
between the neurons, which are then used to modify
weights [24].



In supervised learning the weights, connecting neurons
are set on the basis of detailed error information supplied
to the network by an external teacher. In most cases the
network is trained using a set of input-output pairs, which
are examples of the mapping that the network is required
to learn to compute. The learning process may therefore
be viewed as fitting a function, and its performance can
thus be judged on whether the network can learn the
desired function over the interval represented by the
training set, and to what extent the network can
successfully generalize away from the points that it has
been trained on.

2.1. MULTILAYER FEEDFORWARD NETWORK
The simplest network capable of supervised learning is a
two-layer feedforward network consisting of an input
layer and an output layer. Each neuron of the input layer
receives a signal from all input neurons along connections
with modifiable weights. But such two-layer feedforward
networks can compute only linearly separable functions.
However, it has also been shown that a feedforward
network with more than one layer of adaptive weights can
compute very complex functions.

Figure 1. Schematic multilayer feed-forward ANN

The neurons in the network can be divided into three
layers: input layer, output layer and hidden layers (Figure
1). It is important to note that in feedforward networks,
signals can only propagate from the input layer to the
output layer via one or more hidden layers. It should also
be noted that only the nodes in the hidden layers and the
output layer, which perform activation function, are
called ordinary neurons. Since the nodes in the input layer
simply pass on the signals from the external source to the
hidden layer, they are often not regarded as ordinary
neurons.

2.2. RESILIENT PROPAGATION ALGORTIHM
Resilient propagation (Rprop) algorithm is one of the
faster back propagation learning algorithms. When the
learning process starts, an input pattern is presented to the
input neurons for each training set. This pattern is then
propagated forward through the entire network, yielding
an output pattern from the output neurons. This output
pattern is compared with the corresponding target output.
The connection weights are then modified according to
the deviation of the real output from the target output.

This process is repeated until the deviation does not
exceed a certain threshold for each training set. The
connection weights of the feedforward network are
modified in the standard back propagation algorithm on
the basis of the minimization of the error by steepest
descent. In standard back propagation, the weights are
updated proportional to the computed derivative,

ij
ij w

Ew
∂
∂

η−=∆
(1)

where wij is the weight of the connection from the i-th
unit in the predecessor layer to the j-th unit in the actual
layer and η is called the learning rate, usually a real
number in the interval (0-1). To avoid oscillations, a
momentum term can be added to eq. (1) in the back
propagation algorithm. Rprop algorithm considers the
local topology of error function E. Although, standard
back propagation uses two factors, such as learning rate η
and partial derivative of the error function ∂E/∂wij, Rprop
introduces a so called ‘update value’ that determines only
the step width of the weight change for each connection
weight. Only the sign of the partial derivative ∂E/∂wij is
taken to determine the direction of the weight change,
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where t is the iteration number and ∆ij is a ‘personal’
update value for each connection weight, such as,
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Whenever the partial derivative of the corresponding
weight wij changes its sign, indicating that the last update
value was too big, and the algorithm has jumped over a
minimum, the update value ∆ij is decreased by the factor
η-. If the derivative retains its sign, the update value is
slightly increased in order to accelerate convergence in
shallow regions. If there has been a change in the sign of
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the derivative, the adaptation process is skipped in the
following step, in order to prevent too rapid decreased in
step width. It has been seen that η- = 1.2 and η+ = 0.5 give
acceptable results. So, these values have been taken in the
computation. Initially all the update values ∆ij are set to
initial value of ∆0 = 0.07. The upper value is taken as ∆max
= 50.

2.3. NORMALIZATION OF INPUT-OUTPUT DATA
Since the input and output variables of the ANN have
different ranges, the feeding of the original data to the
network, leads to a convergence problem. It is obvious
that the output of the ANN must fall within the interval of
(0-1). In addition, input signals should be kept small in
order to avoid a saturation effect of the sigmoidal
function. So, the input-output patterns are normalized
before training the network. Normalization by maximum
value is done by dividing input-output variables to the
maximum value of the input and output vector
components. After the normalization, the input and output
variables will be in the range of (0 to 1).

3. APPLICATION OF ANN AND COMPARISON
OF THE RESULTS

An example will be given to illustrate the application of
ANN and its results will be compared with those of the
other methods.

The data, used in our study, received from [2], is shown
in Table 1. Here, Vi is the peak value of the applied
voltage and pi is the breakdown probability at Vi.
Applying the data to ANN, acceptable results are
obtained very fast, because the Rprop algorithm
converges much faster than the other learning algorithms.

Table 1. The data used in the study.

Vi (kV) pi

13.88 0.10
14.31 0.35
14.67 0.42
14.99 0.72
15.33 0.75

Data, applied to the network as input variables are
voltages, those applied in the test and the output variables
are the probabilities, obtained at applied voltages.
Therefore, ANN includes only one input neuron and one
output neuron.

The performance of Rprop algorithm is not very sensitive
to the settings of the training parameters. Therefore,
detailed studies have not been done to determine the
parameters, but the effect of the number of neurons in the
hidden layer has been taken into account. Number of the
neurons in the hidden layer has changed from 2 to 10.

Figure 2. Determination of V50 and σ using ANN.

The results show that one hidden layer of 4 neurons gives
the best training and test results accuracy. All the above-
mentioned studies have been done with one hidden layer,
and the results were evaluated after 100 iterations.

Training was continued, with the optimal number of
neurons in the hidden layer, until the mean squared error
met a fixed value of training accuracy, which is %1.10-3.
The training was stopped after 43 iterations where the
mean absolute error defined as the difference between
expected breakdown voltage and the actual voltage, that
is determined by the ANN, is less than 2.7% (Table 2).

Table 2. Comparison of the expected values and
ANN outputs

Peak value of the applied voltages (Vi) [kV]Breakdown
probabilities

(pi) Expected values ANN outputs

0.10 13.8800 13.8802
0.35 14.3100 14.3097
0.42 14.6700 14.6718
0.72 14.9900 15.0195
0.75 15.3300 15.2262

Training time for 43 iterations and the test is less than a
second. Training process is shown in Figure 3. The
results of the critical breakdown voltage (V50) and the
standard deviation (σ) are given in Table 3. The values of
the first three methods were received from [2], and those
of the last one were obtained by ANN, using the data
given in Table 1.



Figure 3. Change of mean squared error with respect to
iteration number

The critical breakdown voltage V50 obtained by ANN is
very close to the mean value of the other three methods.
The standard deviation σ is a little smaller than those of
others.

Table 3. Comparison of the results.

Method V50 (kV) σ (kV)
Maximum Likelihood 14.606 0.732
Graphical 14.730 0.712
Recursive Algorithm 14.713 0.727
Least Squares 14.693 0.694
Neural Network 14.712 0.708

4. CONCLUSIONS
This study presents a new technique based on artificial
neural network to determine critical impulse breakdown
voltage. A multi-layer feedforward network with resilient
propagation learning algorithm is designed for the
purpose.

Computational difficulties that arise in the other methods
are avoided, and the calculated values are very close to
those given in the literature. Also the determination time
is very small with the learning process. The 50%
breakdown voltage of an electrode configuration and its
standard deviation can be easily obtained using ANN
with acceptable results.

The method uses a very simple algorithm, and gives
accurate values for the critical breakdown voltage and
standard deviation, if the breakdown probability data lies
within the range of p(V) = 10% and p(V) = 90%.
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