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ABSTRACT 

Metamaterials (MTM) have attracted great attention 
for the last couple of years. These new materials have 
a wide potential range of applications and research has 
focused on understanding electromagnetic properties 
of MTM. This presentation aims to review numerical 
simulation strategies of modeling MTM based on 
FDTD method and to give characteristic examples.  

 
I. INTRODUCTION 

Materials having negative real parts of both their 
permittivity and permeability are among popular research 
topics [1-18]. They are called metamaterials (MTM), left-
handed materials (LHM), or double-negative-index 
materials (DNG). Recent research has focused both on the 
behavior of these MTMs as well as on the incorporation 
of negative permittivity and permeability into 
electromagnetic theory. Electromagnetic properties of 
MTMs are said to be difficult or impossible to achieve 
with conventional, naturally occurring materials [1]. 
 
Veselago investigated the key theoretical aspects and 
some applications of MTMs a few decades ago [2]. He 
pointed out that MTMs have simultaneously negative 
permittivity and permeability and some unique properties, 
such as inverse Snell effect, an inverse Doppler shift, and 
backward-directed Cherenkov radiation [3]. In 1999, 
Pendry showed that materials with an array of split ring 
resonators (SRRs) produce negative permeability over 
certain frequency bands [4]. Combining SRRs with arrays 
of metallic wires enabled the construction of MTMs with 
both effective permittivity and permeability negative. 
Smith in 2001 demonstrated for the first time the 
experimental existence of MTMs [5]. Since then, 
numerical modeling, experimental verification, and design 
studies have increasingly appeared in the literature (see 
[6] for the most recent comprehensive review of, and [7-
10] for interesting discussions on, MTMs).    
 
Numerical MTM modeling studies are mostly based on 
the finite-difference time-domain (FDTD) method. 

Efficient and accurate dispersive MTM-FDTD algorithms 
have been developed and used to investigate 
electromagnetic wave interaction with MTMs. This 
presentation aims to review numerical modeling of 
MTMs. In particular, a two-dimensional (2D) MTM-
FDTD algorithm is developed for this purpose and the 
time-domain electromagnetic wave interaction with 
MTMs is investigated.  
 

II. METAMATERIALS 
Electromagnetic response of a system is determined to a 
large extent by the electrical properties of the materials 
involved. These macroscopic parameters are the 
permittivity ε, permeability µ, and conductivityσ. A 
medium with both permittivity and permeability greater 
than zero (ε > 0, µ > 0) is called a double positive (DPS) 
medium. A medium with permittivity less than zero and 
permeability greater than zero (ε < 0, µ > 0) is designated 
as ε-negative (ENG) medium. Many plasmas exhibit this 
characteristic in certain frequency regimes. A medium 
with the permittivity greater than zero and permeability 
less than zero (ε > 0, µ < 0) is called a µ-negative (MNG) 
medium. Some gyrotropic materials exhibit this 
characteristic in certain frequency regimes. Finally, 
materials with permittivity and permeability both less than 
zero (ε < 0, µ < 0) are called double-negative (DNG) 
media.  
 
One of the main reasons researchers have investigated 
MTMs is the possibility to create a structure with a 
negative refractive index, since this property is not found 
in any naturally occurring material. Almost all materials 
encountered in optics, such as glass or water, have 
positive values for both ε and µ. However, many metals 
(such as silver and gold) have negative ε at visible 
wavelengths. Materials with either ε or µ (but not both) 
negative are opaque to electromagnetic radiation. 
 
Although the optical properties of a transparent material 
are fully specified by the parameters ε and µ, in practice 
the refractive index rrn µε±=  is often used. All known 



transparent materials possess positive values for ε and µ. 
By convention the positive square root is used for n. 
However, some engineered MTMs have ε < 0 and µ < 0; 
under such circumstances, the negative square root is 
taken for n ( r
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yields rrn µε−= ). For the MTMs with negative n Snell's 
law (n1sinθ1 =n2sinθ2) still applies, but as n2 is negative, 
the rays will be refracted on the same side of the normal 
on entering the MTM. Moreover, the Doppler shift is 
reversed: meaning that the frequency of a light source 
moving toward an observer appears to reduce. Finally, the 
time-averaged Poynting vector is anti-parallel to phase 
velocity; i.e., the wave fronts are moving in the opposite 
direction to the flow of energy. For a plane wave 
propagating in the MTM, the electric field, magnetic field 
and Poynting vector follow a left-hand rule, thus giving 
rise to the name LHM materials. These are illustrated in 
Fig. 1.  
 

 
Figure 1: Wave propagation through DPS and DNG 
media, and reflections and refractions 
 
In reality, all material properties are frequency-dependent. 
There are several models that have been constructed to 
describe the frequency response of materials. Electrical 
susceptibility (hence, permittivity) and magnetic 
susceptibility (hence, permeability) are used in these 
models. Maxwell equations are standard 
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 But, constitutive relations in the frequency domain for 
dispersive materials are given as 
 
  [ ] )()()( 0 ωωχεεω ED e+= ∞      (2) 
   [ ] )()()( 0 ωωχµµω HB m+= ∞ .   (3) 
 
Here, )(ωχ e and )(ωχm are electric and magnetic 
susceptibilities, respectively, and, ∞ε , ∞µ correspond to 
high frequency limiting (optical) values. Frequency-
dependent complex permittivity and permeability are then 
defined as 
   ( ) ( ))(0 ωχεεωε e+= ∞ .    (4a) 

   ( ) ( ))(0 ωχµµωµ m+= ∞ .    (4b) 
 
Temporal responses may be obtained once the frequency 
domain representations are specified. 
 
LORENTZ MODEL  
The Lorentz model describes the polarization (electric 
dipole) – electric field relation EP e )(0 ωχε= . These are 
given in both domains as 
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The first term on the left of (6) is for the acceleration of 
the charges, the second is for the damping mechanisms of 
the system with damping coefficient Lδ and the third is for 
the restoring forces with the plasma (resonance) 
frequency ωk. On the right side of the equation the term 
exhibits a coupling coefficient gL. 
 
DEBYE MODEL  
If the acceleration term (i.e., the first term in (6)) is small 
compared to the others in Lorentz model and is neglected 
Debye model is obtained:  
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DRUDE MODEL  
Neglecting the restoring force (i.e., the third term in (6) in 
Lorentz model yields the Drude model: 
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In all these models, the high-frequency limit reduces the 
permittivity to that of free space. Only Lorentz and the 
Drude models can produce negative permittivities or 
permeabilities when the coupling coefficient is positive. 
Because the Lorentz model is resonant, the real part of the 
susceptibility and, hence, that of the permittivity become 
negative in a narrow frequency region immediately above 
the resonance. On the other hand, the Drude model can 
yield a negative real part of the permittivity. 
 
Complex relative permittivity has frequency dependent 
real and imaginary parts, where the real part characterizes 
the refractive property, while the imaginary one 
characterizes the absorptive property of material. As an 
example, real and imaginary parts of a Lorentz material 
vs. frequency are plotted in Fig. 2. The shaded region is 
the region of anomalous dispersion. The real part of 
permittivity decreases with increasing frequency in this 
region; causing an increase in the group velocity. The 
imaginary part of the permittivity makes a peak in the 
anomalous dispersion region, indicating that the material 
present a high attenuation to signal frequencies present in 



this region. The regions outside the anomalous region is 
said to have a normal dispersion. 

 
Figure 2: Real and Imaginary part of Lorentz material. 
The real part of relative permittivity of lossy MTM has 
negative value above 1 GHz to 7 GHz. Thus double 
negative regions appears from 1 GHz to 7 GHz 
( 2142 −= ekε , 1=kα , 2.0=kδ )71(91 −×= eekω ). 
 
A generic form of the electric susceptibility is given as 
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This equation lets to define an arbitrary number of media 
using an arbitrary number of resonances per medium. An 
example for k=3 (dual plasma resonance) is pictured in 
Fig. 3. Values used in this example are listed in Table 1. 
 

 
Figure 3: A dispersive medium with double plasma 
resonances around 1GHz and 2GHz. 
 
III. FDTD METHOD IN DISPERSIVE MEDIA 
Originally the FDTD scheme (Yee's algorithm [11]) was 
proposed with the assumption that the medium was non-
dispersive; constitutive parameters of permittivity and 
permeability are constant. In reality, these parameters 
vary with frequency; such as water, biological tissues, and 
MTMs discussed here. Several techniques have been 
proposed in order to incorporate frequency dispersion into 
the FDTD codes [12,18].  
 

Table 1: Numerical values used for Figure 2. 
 k=1 k=2 k=3 

kα  0 1 1 

kδ  0.25 0.025 0.2 

kω  1GHz 2GHz 1GHz 

kε  1 0.236 0.473 

 
The well-known standard Yee time-stepping iterative 
equations need to be modified in order to model a 
dispersive medium. Several dispersive FDTD methods, 
such as Recursive Convolution (RC), Auxiliary 
Differential Equation (ADE) and Z-transform (ZT) 
methods have been used. ADE method was proposed by 
Kashiwa and co-workers [15].  Here, the constitutive 
relation between electric flux density and electric field is 
expressed by an ordinary equation in the time domain by 
utilizing the inverse Fourier transformation. In the RC 
approach, this is achieved directly in the time domain 
through a convolution integral [17]. Again, the relation 
between D and E is used in the ZT apprach. This is first 
implemented in the FDTD method by Sullivan [18].  
 
ADE method is used here and a 2D TE-type MTM-FDTD 
code is developed. It should be noted that the terms TE 
and TM are used differently in electromagnetic and optics 
societies. TE and TM stand for transverse electric and 
transverse magnetic, respectively. These terms are used 
for guided wave propagation problems, which are best 
solved by decomposing wave equations and wave fields  
into transverse and longitudinal components. The 
longitudinal direction is the direction of guided 
propagation. In electromagnetics it is customary to 
assume z-axis as the longitudinal direction, and the xy-
plane as the transverse plane. Therefore, TEz-type and 
TMz-type 2D problems mean 0=zE and 0=zH , 
respectively. The corresponding field components for the 
TEz and TMz type problems are xH , yE , zH and, 

xE , yH , zH , respectively. Under this terminology, for 
example, a 2D MTM-Slab may be assumed infinite-
extend along y-direction and is located on the xz-plane. 
 
In recent FDTD-based MTM modeling studies the 2D 
MTM-Slab is located on xy-plane and is assumed infinite 
along z-direction. Under this assumption, the field 
components for the TE-type problem are specified to be 

xE , yE , and zH . This is given in Fig. 4. The same 
structure and the latter terminology are also used in this 
presentation. The flow chart of both standard-FDTD and 
MTM-FDTD algorithms are given in Fig. 5. As shown, 
electric displacement D values are updated using H fields, 
while magnetic flux B values are updated from E fields. 
This is achieved via updating electric and magnetic 
polarizations.  
 



 
Figure 4: The 2D TE-type FDTD space 

 

 
Figure 5: Flow charts of (a) Standard-FDTD, (b) MTM-

FDTD algorithms 
 
IV. A 2D MTM SLAB and FDTD SIMULATIONS  
A finite-length, infinite-extend MTM slab has been 
extensively used for the visualizations of electromagnetic 
wave – MTM interactions [7-10]. As summarized in Sec. 
II, waves hitting MTM layer boundary will be refracted 
on the same side of the normal and wave fronts are 
moving in the opposite direction of energy flow. This will 
be illustrated in this Section using MTM-FDTD. 
 
An infinite-extend MTM layer having finite thickness is 
located on the xy-plane as shown in Fig. 1. The 
parameters are chosen in such a way that around 1GHz 
operating frequency the imaginary part of the MTM slab 
permittivity and permeability become negligible and real 
parts are approximately equal to -1. The frequency range 
where the relative permittivity and permeability are 
sufficiently close to −1 is very narrow. Thus, the time 
dependence of the excitation must be specified in such a 
way that its spectrum is very narrow.  This necessitates 
the use of smoothly ramped sinusoidal signals (e.g., see 
equation (12) in [8]). A steady state regime is reached 
after a long simulation times because of the slow 
convergence.  

 
Fig. 6 shows frequency variations of relative permittivity 
and permeability for the set of parameters listed in Table 
1. The imaginary part is approximately zero. All 
parameters of electrical and magnetic susceptibilities are 
chosen the same, so curves belong both of them. Two 
curves correspond to two sets of parameters; giving 

1−=n  at the plasma frequencies of 1 GHz and 1.2 GHz, 
respectively.   
 

 
Figure 6: Permittivity and permeability of the MTM-Slab 
 
The first simulation result is given in Fig. 7 for a lossless 
DPS slab. Here, standard FDTD is used. The 2D FDTD 
space is 701×351, 1=∆=∆ yx  mm, f=1 GHz (i.e., λ=30 
cm), slab thickness d=1 mm (=λ/30), 20/02.0 ==∆ ft ps.  
Source is injected via Ex-field 0.5 mm away from the 
DPS layer.   

 
Figure 7: Propagation through a DPS dielectric slab with 

5.1=rε and 1=rµ  (normal incidence). 
 
The simulations with the same operational parameters are 
repeated for the DNG (MTM) layer; the results are plotted 
in Fig. 8. As shown from Fig. 6, both relative permittivity 
and permeability at 1 GHz is -1. Therefore, there is a 
perfect match at the DPS – DNG boundary. The foci 
occur at equal distance.  
 



 
Figure 8: Propagation through a MTM-Slab (f=1 GHz 
and 1−=n ). 
 
The last simulation result is given in Fig. 9 and belongs to 
a case where both relative permittivity and permeability at 
1 GHz is around -2. Therefore, the focal distance is twice 
the distance between source and DPS-DNG boundary. 
 

 
Figure 9: Propagation through a MTM-Slab (f=1 GHz 
and 2−=n ). 
 
 

V. CONCLUSION 
In this presentation, numerical modeling and simulation 
studies on metamaterials are reviewed. Two-dimensional 
FDTD-Based algorithms of both TEz and TMz type 
problems are developed. Electromagnetic wave – 
metamaterial slab interactions are investigated. Wave 
propagation through the boundary of double positive 
medium – double negative medium is visualized.    
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