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ABSTRACT 
The two characteristic parameters of multilayered coplanar 
waveguides with finite-width ground planes have been 
determined with the use of only one neural model. The 
model was trained with six different training algorithms to 
obtain better performance and learning speed with simpler 
structure. The results have shown that the estimated 
characteristic parameters are in very good agreement with 
the other theoretical and experimental results available in 
the literature. 
 

I. INTRODUCTION 
In microwave and millimeter-wave integrated circuits 
(MMICs) coplanar waveguides (CPWs) have been widely 
used as an alternative to microstrip lines. The principal of 
CPWs simplifies the fabrication process by eliminating 
via holes. CPWs are often used in designing power 
dividers, balanced mixers, couplers and filters. The first 
analytic formulas for calculating quasi-static parameters 
of CPWs have been given by Wen [1] with the use of 
conformal mapping theory (CMT). However, Wen’s 
formulas were based on the assumption that the substrate 
thickness is infinitely large; many researchers have 
extended the application of conformal mapping to CPWs 
with finite dimensions [2, 3]. To date, CPWs have been 
analyzed as complex structures in contrast with that first 
proposed by Wen. However all these analytical formulas 
are useful only for the CPWs with a single dielectric 
layer. In practice, there are many circumstances in which 
the substrates are multilayer. For example, in integrated 
circuits, connection lines either on buried between 
dielectric layers. In addition most of the initial studies on 
CPWs with finite-width ground planes were limited to 
dielectric substrates of infinite thickness. However, in a 
practical circuit, the thickness of the substrate is always 
finite. Hence subsequent studies considered CPWs with 
finite ground planes on a dielectric substrate [3-5], and 
sandwiched between two dielectric substrates [6], and 
sandwiched between multiple dielectric substrates [7].  
To date, CPWs have been analyzed with use of quasi-
static methods such as CMT [1-7] or full-wave techniques 
[8-10] in the literature. Full-wave analysis provide high 

precision in a wide frequency band and CMT leads to 
closed form analytical solutions suitable for CAD 
software packages and they provide simulation accuracy 
comparable with full-wave techniques for frequencies up 
to 20 GHz [7]. 
These methods, used to obtain the effective dielectric 
permittivity and the characteristic impedance of CPWs, 
have some disadvantages. The full-wave methods mainly 
take tremendous computational efforts, can not still make 
a practical circuit design feasible within a reasonable 
period of time and require strong mathematical 
background knowledge and time-consuming numerical 
calculations which need very expensive software 
packages. So they are not very attractive for the 
interactive CAD models. On the other hand, the closed-
form design equations obtained by CMT consist of 
complete elliptic integrals which are difficult to calculate 
even with computers. For this reason, the approximate 
formulas are proposed in calculation of elliptic integrals 
[11]. 
Learning and generalization ability, easy of 
implementation and fast real-time operation features have 
made artificial neural networks (ANNs) popular in the last 
decade. Neural network modeling is relatively new to the 
microwave community. Furthermore, accurate and 
efficient microwave circuit components and microstrip 
antennas have been designed with the use of ANNs [12-
17]. In these applications, ANNs have more general 
functional forms and are usually better than the classical 
techniques, and provide simplicity in real-time operation. 
In this study, the characteristic parameters of Multilayered 
CPWs with finite-width ground planes (MCPWs-FWGP) 
have been determined with the use of only one neural 
model. ANNs were trained with six different training 
algorithms to obtain better performance and learning 
speed with simpler structure. Levenberg-Marquardt (LM), 
quasi-Newton (QN), Bayesian Regulation (BR), 
Conjugate with Fletcher (CGF), Gradient descent with 
momentum and adaptive learning rate (GDX) and 
Resilient Backpropagation (RP) training algorithms were 
used to train neural model. The inputs of this model are 



effective relative constants of the dielectric layers εr1, εr2 
and εr3 and six geometric dimensions of MCPWs-FWGP 
(h1, h2, h3/h2, b/c, a/b and c). The outputs are the effective 
permittivity (εeff) and characteristic impedance (Z0) of 
MCPWs-FWGP. In addition, the proposed neural model 
can be useful for different CPW configurations by 
choosing the appropriate geometric dimensions. This 
means, one can calculate the characteristic parameters of 
different CPW configurations with finite ground planes 
such as; conventional CPWs (εr1=1 and εr2=1), 
sandwiched CPWs between two dielectric substrates 
(εr2=1), sandwiched CPWs between three dielectric 
substrates and supported CPWs (SCPWs) (εr1=1). This 
flexibility is one of the other advantages of the proposed 
neural model. 
 

II. THEORY 
Figure 1 shows the structure of the MCPW with finite-
width ground planes. In the figure, S (2a) represents the 
width of the signal ground. w is the width of the slots. g is 
the width of the ground planes. h1, h2 and h3 are the 
thicknesses of the dielectric substrates. εri’s are the 
effective relative constants of the dielectric materials. In 
the quasi-TEM limit the basic characteristics of CPWs can 
be determined when the capacitance of per unit length is 
known. The capacitances per unit length of waveguiding 
structures are determined with the assumption of the metal 
strips thickness are zero. The line capacitance of CPW can 
be given as a sum of partial capacitances. 

 
Figure 1. MCPW with finite ground planes 
 
Therefore, in order to obtain the characteristic parameters 
of MCPWs-FWGP one only has to find the partial 
capacitances. Thus, the total capacitance of the 
transmission line is 
 

3210 CCCCC +++=     (1) 
 
where C0 is the capacitance of the line in the absence of 
all dielectrics. C1, C2 and C3 are the capacitance of the line 
assuming here is that the electric field exists only in the 
dielectric layers of thickness h1, h2 and h3 and relative 

dielectric constants (εr1-1), (εr2-1) and (εr3-εr2), 
respectively. The capacitances of C0, C1, C2, and C3 are 
determined by means of the conformal mapping theory [7] 
and can be written as 
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The effective permittivity (εeff) of the line can be 
determined as; 
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The characteristic impedance (Z0) can be then determined 
as; 
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These closed-form expressions obtained by CMT consist 
of complete elliptic integrals of first kind which are 
difficult to calculate even with computers. Because of 
this, the approximate formulas were proposed calculation 
of elliptic integrals [11]. In this case, the characteristic 
impedance and effective permittivity of MCPWs-FWGP 
easily and simply determined by neural modeling 
approach. 
 

III. ARTIFICIAL NEURAL NETWORKS (ANNs) 
Artificial neural networks (ANNs) are the computer 
programs that are biologically inspired to simulate the 



way in which the human brain processes information. 
There are many types of neural networks for various 
applications in the literature. ANNs are feed-forward 
networks and universal approximators. They are the 
simplest and therefore most commonly used neural 
network architectures [18]. ANNs gather their knowledge 
by detecting the patterns and relationships in data and 
learn through their architectures and learning algorithms. 
An ANN consists of three layers: an input layer, an output 
layer and hidden layer. Neurons in the input layer act only 
as buffers for distributing the input signals xi to neurons in 
the hidden layer. Each neuron j in the hidden layer sums 
up its input signals xi after weighting them with the 
strengths of the respective connections wji from the input 
layer, and computes its output yj as a function of the sum 
 
yj  = f ( ∑ wji xi )     (11) 
 
f can be a simple threshold function, a sigmoid or a 
hyperbolic tangent function. The outputs of neurons in the 
output layer are similarly computed. Following this 
calculation, a learning algorithm is used to adjust the 
strengths of the connections in order to allow a network to 
achieve a desired overall behavior. In this work, many 
learning algorithms were used to train the neural models 
but better performance and learning speed with simple 
structure were achieved from the LM, The QN, the BR, 
the CGF, the RP and the GDX training algorithms, among 
all. These algorithms were summarized in the previous 
works [12, 13] of authors. 
 

IV. APPLICATION TO THE PROBLEM 
The proposed technique involves training an ANN to 
calculate the effective permittivity εeff and the 
characteristic impedance Z0 of MCPWs-FWGP when the 
values of relative constants εr1, εr2 and εr3 and the other 
geometric dimensions are given. Training ANNs using 
different algorithms involve presenting those different sets 
εr1, εr2, εr3 , h1, h2, h3/h2, b/c, a/b and c , εeff and Z0) 
sequentially and/or randomly and corresponding 
calculated values the effective permittivity εeff and the 
characteristic impedance Z0. Differences between the 
target and the actual outputs of the model are calculated 
through the network to adapt its weights. The adaptation 
is carried out after the presentation of each set until the 
calculation accuracy of the network is deemed satisfactory 
according to some criterions. These criterions can be the 
errors between εeff and εeff-ANN and Z0 and Z0-ANN, which are 
obtained from ANN, for all the training set fall below a 
given threshold or the maximum allowable number of 
epochs reached.  
The training and test data sets have been obtained from 
the CMT introduced in [3, 7] and experimental study 
proposed in [19] used in this work. 44800 and 5302 data 
sets were used in training and test processes, respectively. 
The ranges of training and test data sets were 1≤ εr1≤9.85, 
1≤ εr2≤13, 1≤ εr3≤13, 5mm≤h1≤10mm, 1mm≤h2≤10mm, 

0.1≤h3/h2≤0.9, 0.1≤b/c≤0.9, 0.1≤a/b≤0.9 and 
5.75mm≤c≤24mm. After several trials; it was found that 
one hidden layered network achieved the task in high 
accuracy. The most suitable network configuration found 
was 10x20x10x2, this means that the numbers of neurons 
were 10 for the input and second hidden layers and 20 for 
the first hidden layers and 2 for output layers as shown in 
Figure 2. The tangent hyperbolic activation functions 
were used in the hidden layers. Linear activation function 
was employed in the output layer. Root mean square 
(RMS) and the average absolute percentage errors are 
considered throughout this neural model. 
 

 
 
Figure 2. Neural model for MCPWs-FWGP 
 

V. RESULTS 
The training and test RMS errors obtained from neural 
models are given in Table 1. When the performances of 
neural models are compared with each other, the best 
results for training and test were obtained from the models 
trained with the LM and the QN algorithms. The results of 
the CMT [7] and the neural model trained with the LM for 
the effective dielectric permittivity and the characteristic 
impedance of SCPWs-FWGP and MCPWs-FWGP is 
given in Figure 3 (a) to (f). Figure 3.(a), (b) (c) and (d) 
depicted for different c values for the characteristic 
parameters of SCPWs-FWGP when εr1=1, εr2=10.5, 
εr3=2.2, h1=10mm, h2=10mm, b/c=0.4. Figure 3 (e) and (f) 
depicted for the characteristic parameters of MCPWs-
FWGP when εr1=9.85, εr2=10.5, εr3=2.2, h1=10mm, 
h2=10mm, b/c=0.4, c=9mm. The good agreement shown 
in the Figure 3 supports the validity of our neural model 
for SCPWs-FWGP and MCPWs-FWGP. In Table 2, 
comparisons between the ANN model results, measured 
results [19] and other theoretical results [3] for the 
conventional CPW-FWGP available in the literature are 
given. The average absolute percentage errors between the 
measured [19] results and our neural model results is 
1.331 %, the error between the measured [19] results and 
Veyres and Hanna’s [3] formulas results is 1.609 % and 
the error between the measured [19] results and Chen and 
Chou’s [7] formulas results is 1.753 %. These results 
obviously show that our neural models are valid for the 
calculation of the effective permittivity of conventional 



CPWs-FWGP. As can be clearly seen from the table there 
is very good agreement between the results of the 
proposed ANN model and the other theoretical and 
experimental results. 
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VI. CONCLUSION 

The characteristic parameters of MCPWs-FWGP have 
been successfully determined with the use of only one 
neural model. Using proposed neural model, one can 
calculate accurately the effective permittivity and the 
characteristic impedance of MCPWs-FWGP without 
possessing strong background knowledge. In addition 
proposed neural model can also be used to determine the 
characteristic parameters of conventional CPWs-FWGP, 
sandwiched CPWs-FWGP between two dielectric 
substrates, supported CPWs-FWGP and sandwiched 
CPWs-FWGP between three dielectric substrates.  

c) SCPW-FWGP (εr1=1, εr2=10.5, εr3=2.2 c= 24 mm) 
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Finally, neural model presented in this work can be used 
easily, simply and accurately to determine the 
characteristic parameters of MCPWs-FWGP. 
 
Table 1. Training and test RMS errors for the 
characteristic parameters of MCPWs-FWGP.  d) SCPW-FWGP (εr1=1, εr2=10.5, εr3=2.2 c= 24 mm) 

Training RMS 
Errors Test RMS Errors Learning 

Algorithms 
εeff Z0 (Ω) εeff Z0 (Ω) 

LM 0.0310 0.0585 0.0773 0.1011 
QN 2.5507 2.614 1.8722 2.1558 
BR 1.1015 1.0648 1.155 2.5546 

CGF 0.5962 5.6319 23.8775 21.8276 
RP 8.8542 6.1968 13.6457 18.9706 

GDX 22.6585 27.8889 84.1748 69.2312 
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e) MCPW-FWGP (εr1=9.85, εr2=10.5, εr3=2.2, c=9 mm) 
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a) SCPW-FWGP (εr1=1, εr2=10.5, εr3=2.2 c=5.9 mm) 
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f) MCPW-FWGP (εr1=9.85, εr2=10.5, εr3=2.2, c=9 mm) 

 

⎯⎯  CMT and   ◊   ANN for h3/h2=0.2 
– – –  CMT and   ∆   ANN for h3/h2=0.4 
 - - - - CMT and   o   ANN for h3/h2=0.6  
– - – - CMT and   x   ANN for h3/h2=0.8 

Figure 3. The neural and CMT results for different 
configurations of SCPWs-FWGP and MCPWs-FWGP 
(h1=h2=10mm, b/c=0.4) b) SCPW-FWGP (εr1=1, εr2=10.5, εr3=2.2 c=5.9 mm) 



Table 2. Comparison results for measured, theoretical [3, 7] and presented ANN model for conventional CPWs-FWGP 
h3=0.65mm εr3=9.85 εr1=εr2=1 f=4GHz 
 

S/h w/h g/h εeff_measured 
[19] 

εeff_calculated
[7] 

Error 
% 

εeff_calculated
[3] 

Error 
% 

εeff 
(ANN) 

Error 
% 

2.04 0.15 11.64 4.737 4.756 0.401 4.753 0.338 4.76 0.486 
1.95 0.66 11.61 4.237 4.263 0.613 4.261 0.566 4.24 0.071 
1.85 1.8 10.93 3.627 3.531 2.647 3.531 2.647 3.557 1.93 
1.89 3.59 11.38 3 2.856 4.8 2.856 4.8 2.92 2.667 

1 1.09 35 4.41 4.338 1.633 4.338 1.633 4.363 1.066 
0.37 1.03 7.75 4.75 4.789 0.821 4.789 0.821 4.816 1.389 
0.76 1.03 7.75 4.5 4.535 0.788 4.535 0.778 4.569 1.533 
1.55 1.03 7.8 4.17 4.136 0.815 4.136 0.815 4.13 0.959 
3.1 1.04 7.75 3.7 3.655 1.216 3.655 1.216 3.633 1.811 
7.7 1.01 7.7 3.23 3.107 3.808 3.15 2.477 3.185 1.393 

 1.753%  1.609%  1.331% 
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