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Total installed capacity of wind power 
in Europe
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Wind Power in USA (2004)
Installed capacity(2005) : 8,957 MW
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Key figures of the power system in Germany, 
Spain, Ireland, and Denmark
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Occupation rate of wind power in Europe
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Classification of wind power generation

Horizontal axisHorizontal axisHorizontal axisVertical axisVertical axisVertical axis

Opertaion

Structure

▶ Stand-alone operation▶Grid-connected operation
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Wind power generator

generator

synchronous induction

Permanent 
magnet

Wound-
rotor

Squirrel 
cage

Doubly-
fed



Power Systems & Control Lab., Penn State Univ.

9

Fixed speed operation of wind turbine
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Variable speed wind turbine with synchronous 
generator

Synchronous
generator

Electronic 
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Variable speed wind turbine with 
doubly fed induction generator

Doubly fed induction                                            
generator
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World market share of wind turbine (1998-2002)
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Type A: fixed speed wind turbine with a 

asynchronous squirrel induction generator

Type B: variable speed wind turbine with wound 

rotor induction generator

Type C: variable speed wind turbine with a 

doubly fed induction generator (DFIG)

Type D: variable speed, pitch controlled wind 

turbine
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What are the impacts of wind’s variability on system 

operating cost?

How should wind plant capacity credit (or value) be 

determined?

How has wind affected system operating strategies?

Key Wind Integration Issues



Power Systems & Control Lab., Penn State Univ.

15

a few seconds – one minute: 

frequency regulation

a few minutes – a couple of hours: 

load following

several hours – one or more days:

unit commitment

Impacts of wind’s variability 
on operating cost
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Wind impacts on system operating costs

$350 millionnaNAnanana10GE-NYISO

na4.971.453.3200.2015Xcel-PSCo
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na4.60NA4.3700.2315Xcel-MNDOC

na1.85NA1.440.4103.5Xcel-UwiG
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Capacity Value of Wind Plants

The addition of a wind plant will generally decrease 
the statistical loss of load probability (LOLP)

Some wholesale power markets include a capacity 
component with associated payments to generators

ELCC ( Effective Load-Carrying Capability): 
established measure for estimating capacity 
contributions for system-expansion and resource-
adequacy planning
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Effective Load-Carrying Capability (ELCC)

Reliability-based method to calculate the capacity value of a 
generator

Estimation of the equivalent capacity of a reference unit that 
would provide the same annual reliability level as the wind 
plant in question

Need of hourly wind generation data and a reliability model 
of the system to be evaluated

California: the range of 23%-25% of rated capacity

Onshore capacity value in New York about 9%

Offshore (Long Island) in New York: about 40%
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Effective load-carrying capabilities from several 
recent studies
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Time scales for system planning and operation 
processes (NYISO)
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Wind variability and impact on system operation
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Grid code for wind generation

LVRT (Low Voltage Ride-Through) capability: 

the machines stay connected for voltages at the 

terminals as low as 15% of nominal per unit for 

approximately 0.625sec
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Supervisory control and data acquisition 
(SCADA) equipment for remote control

Reactive power capability: wind plants 
connected to the transmission system is capable 
of operating over a power factor (PF) range of 
lagging 0.95 - leading 0.95
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HVDC system in Europe and Gotland Island
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Gotland Island

Year 1954: LCC HVDC    15MW-> 30MW
Year 1983: 150MW  NEW LCC HVDC replacement

→One way 
Year 1999: 65 MW VSC type HVDC  
Year 2002: Change to Bidirectional HVDC
Year 2003: Maximun load: 160 MW,  minimum load: 40 MW                  

Gas turbine: Synchronous generator for backup 
Year 1984: 3 MW wind power capacity
Year 1994: 15 MW wind power capacity 
Year 2003: 90 MW wind power capacity  

Planning to 300 MW
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Map of Gotland Island
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Wind power generation system in Gotland
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HVDC and wind power system in Gotland
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CRITICAL CLEARING TIME FOR NETWORK 
CONNECTED TO WIND GENERATION SYSTEM
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CONCEPT OF CRITICAL CLEARING TIME 

Swing equation: 

)(
22

2

PePm
Hdt

d s −=
ωδ

Where 

: Angular frequency

t : Time

H : Inertia constant of the rotating mass

sω
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After fault clearing, the oscillation of the speed (and 
consequently the rotor angle) continues for a while, but 
eventually they settle to a new steady-state condition       

stable
The rotor angle continues to increase further and 
generator losses synchronism with the network               

unstable
Maximum rotor angle below which the synchronous 
generator can retain a stable operation                         

critical clearing angle
Corresponding maximum clearing time                             

critical clearing time (CCT)
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TeTm
dt
dJ −=
ω

In case of induction generator

Where 
J :   Moment of inertia of the rotating mass
Tm : Mechanical torque applied on the rotor of 

the associated wind turbine
ω :  Rotor speed

There is a maximum time for the fault to be cleared, 
otherwise, induction generators lose their stability

CCT for induction generator
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INVESTIGATED CASES 
Distribution network with embedded generators
Generators are integrated into the distribution network 
at 22kV voltage level through a 22kV interfacing link
Wind farm is assumed to have fifteen wind turbine 
generator units, each of 660kW with a nominal voltage of 
690V
Investigation that examines the effect on the value of the 
CCT of a wind farm
Factors such as load variation, power factor, wind 
generation capacity and length of the interfacing line
Simulation with Digsilent Power Factory program 
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Schematic diagram of the investigated network
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Network data for simulation

]/[2024.0 kmR Ω=
]/[3891.0 kmX Ω=

30[MW](0.9)

ACSR (160[mm2]) 30[km]

660[kW](0.9) × 15

Load capacity (pf)Length of the interfacing lineGenerator capacity (pf)
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Comparison of CCT for synchronous and 
asynchronous (induction) generator 

Three phase fault is assumed on load terminal (22kV bus)

In case of synchronous generator, fault durations are 
assumed as 306ms and 307ms

CCT is 306ms

For embedded induction generator following a three-
phase fault with durations of 90ms and 91ms 

CCT is 90ms
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wind farm bus voltage (306ms) wind farm bus voltage (307ms)

wind farm bus current (306ms) wind farm bus current (307ms)
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wind farm active power (306ms) wind farm active power (307ms)

wind farm reactive power (306ms) wind farm reactive power (307ms)
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wind farm bus voltage (90ms) wind farm bus voltage (91ms)

wind farm bus current (90ms) wind farm bus current (91ms)
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wind farm active power (90ms) wind farm active power (91ms)

wind farm reactive power (90ms) wind farm reactive power (91ms)
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Effect on CCT according to load variation 

Load variation to 20MW, 30MW and 40MW
By increasing load from 20MW to 40MW, the CCT value 
decreases from 92ms to 86ms.
Effect of load variation on wind farm CCT 

8640

9030

9220

Wind farm CCT (ms)Load (MW)
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wind farm bus voltage (92ms, 20MW load) wind farm bus voltage (93ms, 20MW load)

wind farm bus voltage (86ms, 40MW load) wind farm bus voltage (87ms, 40MW load)
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Effect on CCT according to power factor 

By increasing load power factor from 0.8 to 1.0, the CCT 
value increases from 81ms to 105ms 
Effect of load power factor on wind farm CCT 

1051.0

960.95

900.9

850.85

810.8

Wind farm CCT (ms)Load pf
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Effect on CCT according to wind generation 
power 

By increasing wind generation power from 11MW to 
14MW, the CCT value decreases from 90ms to 42ms
Effect of wind generation power on wind farm CCT

4214

5113

6512

7611

9010

Wind farm CCT (ms)Wind generation power (MW)
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Effect on CCT according to length of interfacing 
line

By increasing length of interfacing line from 0km to 30km, 
the CCT value decreases from 380ms to 10ms
Effect of length of interfacing line on wind farm CCT

1030
3525
6520
10515
16510
2505
3501
3800

Wind farm CCT [ms]Length of the line [km]
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Conclusions

The presence of embedded generator greatly affects the 
CCT of wind farm

CCT of embedded synchronous generator is much higher 
than that of embedded induction generator

The transient stability of a wind farm is affected by the 
type of embedded generator, load variation, power factor, 
wind generation power and the length of interfacing line
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