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ABSTRACT 
This paper proposes a Differential Evolution (DE) 
approach for the Unit Commitment Problem (UCP). 
The proposed approach is tested on benchmark UCP 
datasets as well as on real-world data obtained from 
the Turkish interconnected power network system. 
The results of the DE on the benchmark datasets are 
comparable with the results of a current state-of-the-
art evolutionary approach found in literature. This 
preliminary experimental study shows that DE is 
suitable for the UCP and the promising results 
promote further study. 
 

I. INTRODUCTION 
The Unit Commitment Problem (UCP) is a constrained 
optimization problem in which, optimal turn-on and turn-
off schedules need to be determined over a given time 
horizon for a group of power generation units under some 
operational constraints. The objective is to minimize the 
power generation costs while meeting the hourly 
forecasted power demands. The UCP is an important area 
of research which has attracted increasing interest from 
the scientific community due to the fact that even small 
savings in the operation costs for each hour can lead to 
major overall economic savings. 
 
The UCP consists of two sub-problems [15]: In the first 
part, a feasible, low-cost schedule for turn-on and turn-off 
times of the power generation units over the given time 
horizon is determined. In the second part, for each hour, 
the power outputs for the units scheduled to be online for 
that hour are obtained in such a way as to minimize the 
fuel costs while meeting the forecasted power demands 
for that hour. This second part is termed as the Economic 
Dispatch Problem (14). Several approaches exist in 
literature to tackle the UCP, such as  dynamic-
programming [1, 2], Lagrangian relaxation [3], branch 
and bound [4], benders decomposition [5], simulated 

annealing [6], tabu-search [7], evolutionary algorithms [8, 
9, 10, 11, 15] and many hybrids. A detailed survey can be 
found in [16]. 
 
Evolutionary Algorithms (EAs) [19] are population based 
optimization techniques based on mechanisms found in 
nature. The Differential Evolution (DE) [13] algorithm, 
introduced by Storn and Price in 1995, belongs to the 
group of evolutionary algorithms which operate in 
continuous search spaces. DE has been successfully 
applied to many problem domains. The solution to the 
UCP is given as a set of binary decision variable 
assignments showing which generator units are online and 
which are offline for any given time slot. This makes it 
impossible to apply a pure DE to the UCP. Therefore, in 
this study a binary version of DE (BDE) is used to solve 
the schedule determination part of the UCP. For the EDP, 
a standard lambda-iteration method [12] is used. BDE is 
tested on benchmark UCP data as well as on real-world 
data of the Turkish interconnected power system. 
 
This paper is organized as follows: In section 2, the UCP 
is explained. Section 3 introduces the BDE approach used 
in this study. In section 4, experiments and results are 
given. Section 5 concludes the paper. 
 

II. THE UNIT COMMITMENT PROBLEM 
The objective of the UCP is to minimize the total cost of 
power generation over a given time horizon. Three main 
factors effect this cost: Fuel costs, start-up costs and 
operational constraints of units. The parameters used in 
the UCP formulation are as follows: 
 
Pi(t): generated power by unit i at time t 
Fi(p): cost of producing  p MW power by unit i 
PD(t): power demand at time t 
PR(t): power reserve at time t 
CSi(t): start-up cost of i-th unit at time t 



xi(t): duration that unit i has stayed offline since hour t 
vi(t): status of i-th unit at time t (online-offline) 
 
Fuel cost depends on the amount of power output 
provided by each online unit for each time slot. The fuel 
cost needs to be minimized subject to two constraints: The 
power demands for each hour should be met and the 
power generated by each unit should be within its 
minimum and maximum capacities. This part of the 
objective can be formulized as follows. 
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Start-up costs depend upon the number of hours a unit has 
been down. The formulation for the start-up cost is: 
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There is also another constraint named minimum up/down. 
Each generator should stay online for an arbitrary number 
of hours after it is turned-on. It also should stay off for a 
time after it is turned-off. This number of hours can vary 
according to different power generating units. The 
formulation for these constraints is: 
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According to these fuel cost and start-up cost functions 
and constraints, the formulation for the UCP for N units 
and T hours is as given below: 
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Subject to constraints: 
 

∑
=

=
N

i
tPDtivtPi

1
)()().(  

 
maxmin )()().( iiiii PtvtPPtv ≤≤  

)(
1

)()().(max tPR
N

i
tPDtivtiP +

=
≥∑  

 

upttixelse
downttixtivif

≥−

≥−=

)1(

)1(1)(
 

 
The fuel cost of generating p MW power for the i-th unit 
is calculated using the following formula: 
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As can be seen, this cost for a generating unit depends on 
three parameters: a0i, a1i and a2i. The lambda-iteration 
technique [12, 14] uses this formulation to find the lowest 
cost for dispatching the amount of power to be generated 
by the online generating units. This corresponds to the 
EDP. To solve the EDP by lambda-iteration, an optimal 
lambda value which also satisfies the constraints is 
searched for.  
 

III. BINARY DIFFERENTIAL EVOLUTION 
The Differential Evolution (DE) [13] algorithm was 
introduced by Storn and Price in 1995. DE is a form of an 
evolutionary algorithm which operates in continuous 
search spaces. DE is based on four main steps: 
Initialization, mutation, recombination and selection. 
While the initialization step is only done in the first 
iteration, the other three steps take place in each iteration. 
All individuals pass through these operations.  
 
The chromosomes of an individual are made up of real 
valued genes, Xj,i,g (where j is the index of the parameter, i 
is the index of the individual and g shows the generation 
number), each of which correspond to the parameters of 
the problem to be optimized. 
  
All individuals in the population, called the target vectors, 
go through the mutation and recombination steps. There 
are several mutation operators. One of the most 
commonly used forms of these operators, the DE/rand/1 
method, chooses three different vectors from the 
population and creates a mutant vector from these, called 
the donor vector, through the equation given below. 
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F takes values in the range (0,1+) and it is recommended 
to set F less than 1 [13]. As can be seen from the 
definition of the mutation operator of the DE algorithm, it 
is not possible to use it for binary valued problems 
without a modification. There are some approaches in 
literature for modifying DE for such binary valued 
problems. One of these methods uses an angle modulation 
technique to transform the binary space into a continuous 



space [17]. In the initial testing stage of this study, the 
experimental results obtained using this technique turned 
out to be insufficient. So the approach proposed in [18] is 
used as the BDE implementation in this study. The details 
of this algorithm are given below. 
 
The initialization step randomly sets the initial values of 
the parameters in the population. to be either 1 or 0. The 
modification on DE to make it run within binary spaces, is 
done to the mutation operator. According to the approach 
proposed in [18], the multiplication, addition and 
substitution operators are changed as explained below. 
The value of any parameter in any of the vectors can be 
either 0 or 1. To preserve this property, the result of 
subtraction and the addition operators are obtained using 
the hamming distance between the two vectors. After the 
substitution step, each parameter in the vector is 
multiplied with the F parameter. This operation forces the 
values of the parameters to change from binary space to 
continuous space. In the next step of the mutation 
operator, which is the addition operator, the values are 
transformed back into being either 0 or 1 through a 
rounding mechanism. A sample application of the 
substitution operator is given in Table-1. 
 

Table 1: Sample application of the substitution operator 
Xr2,g 1 1 0 1 0 
Xr1,g 0 1 0 0 0 
After Substitution 1 0 0 1 0 

 
The aim of the recombination operation is to create a 
different vector based on the donor and the target vectors. 
The parameters of this vector are taken from the target 
vector when a uniformly distributed random number is 
greater than a predefined Cr value; otherwise, it is taken 
from the donor vector [13] as shown in  
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There are two proposed ways [18] to implement this step: 
binomial and exponential. The binomial crossover 
operation considers each parameter in a vector separately, 
however in the exponential crossover operation after 
(randj(0,1) ≤ Cr) becomes true for the first time, the 
remaining parameters are taken from the donor vector as a 
block. The binomial crossover operator is chosen in this 
study. Cr takes values in the range [0,1]. The vector that is 
created through the recombination step is called the trial 
vector.  
 
In the selection step, either the target vector or the trial 
vector is chosen for the next generation as shown below. 
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These steps continue until an acceptable solution is found 
or until a predefined number of maximum DE iterations 
has been reached. 
 

IV. EXPERIMENTS 
 
The results of the tests on the benchmark data will be 
compared to those of a state-of-the-art memetic algorithm 
proposed in [10] and a genetic algorithm. In the BDE, the 
population consists of 100 individuals, Cr is taken as 0.3 
and F is taken as 0.8. In lambda iteration, the tolerance is 
set to 0.0001. 
 
The fitness values of the individuals are calculated as the 
summation of the fuel cost, the cost of start-up and a 
penalty value. Cost for power generation is calculated 
using  lambda-iteration based on the status of each power 
generator unit. For each hour, depending on whether the 
start-up is a cold start or a hot start, the appropriate cost is 
added to the total cost. A penalty term is used if the 
hourly power demands plus a specific amount of reserve 
is not met or if tup and tdown constraints are violated. The 
multiplier M for the first penalty term is set to 200 for all 
tests. The multiplier K for the second penalty term is 
taken as 150 for the second and third tests but as 600 for 
the first test. Details on the fitness evaluation and the 
penalty calculation method can be found in [10]. Several 
runs of the algorithm are performed and the best results 
for the total cost are reported here. All parameter values 
are determined using the best settings found as a result of 
a series of experimental runs. 
 
The first test problem [12] has four power generating 
units and a time horizon of eight hours. The data for this 
test system is given in Table-2 and Table-3. The results 
are presented in Table-4. The best overall result obtained 
using BDE is approximately 74,676 and the best result of 
the genetic algorithm is given as 74,675 in [10].  
 
For the second test, a larger dataset [8] consisting of 10 
generating units and a time horizon of 24 hours is used.  
The data and the results for this test are not reported here 
due to space restrictions. The best result of the genetic 
algorithm [10] is 565,866 and the best result of the 
memetic algorithm [10] is 565,827 as compared to the 
best BDE result which is 566,166 for this test set. 
 
For the third test, real-world data from the Turkish 
interconnected network system is used. There are 8 
generating units and a time horizon of 8 hours. The data 
for this test system is given in Table-5 and Table-6 and 
the results are given in Table-7. 
 



An overview of the best total cost values for the three 
tests is summarized in Table-8. As can be seen, for the 
first test, which is smaller in problem size than the other 
two, BDE gives the same result as the genetic algorithm. 
For the second test, results of the memetic and the genetic 
algorithms are slightly better than the BDE. It should be 
kept in mind that while the BDE is in its most basic form, 
the memetic algorithm [10] uses extra local search 
through hill-climbing during its run which is costly. Thus 
BDE performs fewer actions to find comparable results to 
the state-of-the-art memetic algorithm. 
 

Table 2: Test System 1 [12] 

 Unit 1 Unit 2 Unit 3 Unit 4 
Pmax(MW) 300 250 80 60 
Pmin(MW) 75 60 25 20 
a0 684.74 585.62 213.0 252.0 
a1 16.83 16.95 20.74 23.60 
a2 0.0021 0.0042 0.0018 0.0034 
tup(h) 5 5 4 1 
tdown(h) 4 3 2 1 
Shot($) 500 170 150 0 
Scold($) 1100 400 350 0.02 
tcoldstart(h) 5 5 4 0 
Initial 
State(h) 

8 8 -5 -6 

 
Table 3: Demand and Reserve for Test System 1 [12]. 

Hour 1 2 3 4 
Demand 450 530 600 540 
Reserve 45 53 60 54 
Hour 5 6 7 8 
Demand 400 280 290 500 
Reserve 40 28 29 50 

 
Table 4: Results for Test System 1. 

 P1out P2out P3out P4out 

Hour 1 300.0 150.0 0 0 

Hour 2 300.0 205.0 25.0 0.0 

Hour 3 300.0 250.0 30.0 20.0 

Hour 4 300.0 215.0 25.0 0.0 

Hour 5 300.0 0.0 80.0 20.0 

Hour 6 255 0.0 25.0 0.0 

Hour 7 265.0 0.0 25.0 0.0 

Hour 8 300.0 200.0 0.0 0.0 
 
Table 5: Turkish Interconnected Power System Network 

 U 1 U 2 U 3 U 4 
Pmax(MW) 1120 1350 1432 600 
Pmin(MW) 190 245 318 150 
a0 6595,5 7290,6 6780,5 1564,4 

a1 7,0063 7,2592 5,682 3,1288 
a2  0,0168 0,0127 0,0106 0,0139 
tup(h) 8 1 1 10 
tdown(h) 2 0,5 0,5 3 
Shot($) 800 800 600 400 
Scold($) 1600 1600 1200 800 
tcoldstart(h) 8 1 1 10 
Initial 
State(h) 

-4 -4 -4 -4 

 U 5 U 6 U 7 U 8 
Pmax(MW) 990 420 630 630 
Pmin(MW) 210 110 140 140 
a0 5134,1 1159,5 1697 1822,8 
a1 6,232 3,3128 3,2324 3,472 
a2  0,0168 0,021 0,013 0,0147 
tup(h) 10 10 10 10 
tdown(h) 3 3 3 3 
Shot($) 500 400 400 400 
Scold($) 1000 800 800 800 
tcoldstart(h) 10 10 10 10 
Initial 
State(h) 

-4 -4 -4 -4 

 
Table 6: Demand and Reserve for Turkish Interconnected 
Power System Network 

Hour 1 2 3 4 
Demand 2000 3000 6500 1500 
Reserve 200 300 650 150 
Hour 5 6 7 8 
Demand 4200 5100 2700 1750 
Reserve 420 510 270 175 

 
Table 7: Results for Turkish Interconnected Power System 
Network 

 P1out P2out P3out P4out 

Hour 1 0 0 0 549.4 

Hour 2 0 0 740.7 600 

Hour 3 844.5 1107 1400.9 600 

Hour 4 190 0 0 304.6 

Hour 5 511.7 0 873.5 600 

Hour 6 559.2 729.8 948.8 600 

Hour 7 339 0 0 549.2 

Hour 8 191.5 0 0 371 

 P5out P6out P7out P8out 

Hour 1 0 359.3 583.7 507.8 

Hour 2 0 420 630 609.3 

Hour 3 867.5 420 630 630 

Hour 4 210 197.3 321.7 276.4 

Hour 5 534.8 420 630 630 



Hour 6 582.3 420 630 630 

Hour 7 362 359 583.2 507.6 

Hour 8 214.6 241.2 392.6 339 
 
Table 8: Total Costs for Tests 

 BDE GA Memetic 

Test System 1 74,676 74,675 - 

Test System 2 566,166 565,866 565,827 

Turkish 
Interconnected Power 
System Network 

532,142 - - 

 
 

V. CONCLUSION AND FUTURE WORK 
The use of a binary differential evolution algorithm 
(BDE) for the unit commitment problem (UCP) is 
explored in this study. Three sets of tests are performed. 
The first two sets are on benchmark datasets obtained 
from the literature. The results of these two sets are 
compared to those of a current state-of-the-art 
evolutionary algorithm, namely a memetic algorithm, and 
a genetic algorithm found in literature. Then, the BDE is 
applied to the real-word data obtained from the Turkish 
interconnected network system. The results obtained for 
the benchmark tests are comparable to those of the 
memetic and genetic algorithms. As also stated above, it 
should be noted that while the BDE used in this study is in 
its most basic form, the memetic algorithm uses local 
search through hill climbing during its execution, which is 
costly. Thus BDE performs fewer actions to find 
comparable results.  This preliminary experimental study 
shows that BDE is suitable for the UCP. Other, more 
complicated mechanisms like in the memetic algorithm, 
can be incorporated into the BDE to make it perform even 
better. Also, a sensitivity analysis for the parameter 
settings should be done. In this study, the best settings 
determined as a result of experimental runs is used, 
however it is seen that performance may be dependent on 
the selection of some of the parameters. This should be 
thoroughly explored. Also larger datasets can be used to 
test the scalability of BDE. Average performances of the 
different methods should also be compared in addition to 
the best performance. Overall, the BDE performs well on 
the UCP and the results promote further study. 
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