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Abstract 
 

This paper presents two new methods of online estimation 
for the rotor time constant of the induction motor for 
indirect vector control drives. These methods are presented 
using artificial neural networks with steepest descent back 
propagation training algorithm and recursive least square 
algorithm. These methods use measurements of the stator 
voltages, stator currents and the rotor speed. The problem is 
formulated as finding the rotor flux error, which occurs as a 
result of rotor time constant variation, and then the actual 
value of the rotor resistance is estimated. The effectiveness 
of these algorithms is demonstrated with simulation. 
Keywords-artificial neural networks, recursive least square 
algorithm, rotor time constant, parameter estimation, 
induction motor drive  

 
Nomenclature 

s
ds

s
qs vv ,   Stator voltages in stationary reference frame 

s
ds

s
qs ψψ ,  Stator flux linkages in stationary reference frame 

s
ds

s
qs ii ,   Stator currents in stationary reference frame 

s
dr

s
qr vv ,   Rotor voltages in stationary reference frame 

s
dr

s
qr ψψ ,  Rotor flux linkages in stationary reference frame 

s
dr

s
qr ii ,    Rotor currents in stationary reference frame 

s
md

s
mq ψψ , Mutual flux linkages in stationary reference frame 

rs rr ,    Stator and Rotor resistance respectively 

rs xx ,   Stator and Rotor inductance respectively 

rω    Electrical rotor speed 

bω    Base speed 

" ' "   Rotor parameters or quantities referred to the stator 
 

1. Introduction 
 

Indirect field oriented vector controlled induction motor 
drives are widely used in industrial applications for high-
performance drive systems. The main problem in the indirect 
control, is the rotor open circuit time constant rτ , which is 
sensitive to both temperature and flux level. When the value of 
this parameter is incorrect in the controller, the calculated slip 
frequency will be uncorrected and the flux angle will be no 
longer appropriate for field orientation [1]. Therefore a 
mismatch between the actual rotor flux angle and estimated 

rotor flux angle, as a result of rotor time constant variations, 
leads to error between the actual motor torque and the estimated 
torque and concludes disturbed dynamic performance. Therefore 
it is important the value of rotor time constant is continuously 
estimated. 

The parameter sensitivity effects have been quantified in the 
steady state and the transient state, considering both open and 
closed outer speed loop in the indirect vector controlled 
induction motor drive in [2]. The fast variations of rotor 
resistance due to rotor temperature have been shown in [3]. The 
slip dependency of rotor time constant which is due to motor 
losses is usually ignored. A slip frequency calculation procedure 
has been proposed by [3]. A model reference adaptive control 
scheme has been used to track the variations of the rotor time 
constant in [4]. No ideal characteristics of the power drives and 
stator resistance variations have been included. A model 
reference adaptive control scheme is based on Luenberger 
observer has been presented by [5]. This model has been 
compared with the classical adaptive algorithm.Also a current 
model rotor flux observer based on model reference adaptive 
system scheme, has been proposed in [6]. This method uses the 
desired value of the rotor flux along the Q axis, which should 
ideally be zero. An extended Kalman filter has been used for 
rotor time constant identification in [7] and [8]. Fuzzy logic 
principles have been used for rotor resistance estimation in [9] 
and [10]. Also a simple PI controller has been proposed in [10] 
and a variable gain PI controller, a generalization of a classical 
PI controller, has been proposed in [11]. Recently sliding mode 
control is introduced for induction motor control drives. A 
fourth-order sliding mode flux observer has been developed in 
[12]. A Lyapunov based estimator has been designed in [13]. 
Recursive least square error was used for rotor time constant 
estimation in [14]. 

In recent years, the use of artificial neural networks for 
identification and control of nonlinear dynamic systems in 
power electronics and ac drives have been proposed [15], [16], 
as they are capable of approximating wide range of nonlinear 
functions to a high degree of accuracy [17]. An adaptation 
algorithm which uses the artificial neural networks has been 
proposed in [18]. There are two problems in this method. First is 
training data acquisition and second is complicated and time 
consumption training. A simple two layer feed forward neural 
network, trained by the momentum modification to back 
propagation algorithm (MOBP), has been used to estimate rotor 
time constant in [17]. 

In this paper a single neuron feed forward neural network, 
trained by steepest descent back propagation algorithm (SDBP), 
has been proposed. MOBP algorithm is one of the variations of 
back propagation that provides speedup and makes the 
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algorithm more practical [19]. In this case, a neural network 
model based method is used, in which the neural network model 
has trained in each sample time and training set, has one 
member. Therefore MOBP does not improve the network 
performance certainly. One of the advantages of the proposed 
method is simplicity in calculations. All weights of the neural 
network are described as the functions of induction motor 
parameters and one weight. This leads to accurate and online 
rotor time constant estimation. Another advantage is stability of 
this method. 

A simple recursive least square method has been presented in 
[20]. A nonlinear recursive least square error algorithm was 
used in [21]. In this paper a new recursive least squares 
algorithm (RLS) has been proposed. One of the advantages of 
the proposed method is simplicity in calculations. All of the 
coefficients of the model are described as the functions of 
induction motor parameters and one of these coefficients. 

The rest of the paper is outlined as follows. Section (2) 
describes the induction motor model, which is used. In sections 
(3) and (4), SDBP and RLS algorithm are discussed 
respectively. Rotor time constant estimation, using SDBP and 
RLS algorithms is considered in section (5). Simulation results 
are presented in section (6). Finally, section (7) concludes the 
paper. 

 
2. Induction Motor Model 

 
Standard models of induction motors are available in the 

literature. Stator flux linkage equations in three-phase induction 
motor modeled by d-q stationary reference frame can be derived 
as [22]: 
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By substituting (3) and (4) in (1) and (2) respectively, after 
some calculations, equations (5) and (6) can be expressed as 
following. 
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By using stator flux linkage equations and (7) to (10), 
equations (11) and (12) can be written as following. 
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Equations (11) and (12) are based on stator voltages and 
currents, which calculate the actual rotor flux linkage. 

Also rotor flux linkage equations can be derived as [22]: 
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By using equations (7) to (10), equations (13) and (14) can be 
written as: 
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Equations (15) and (16) are based on stator currents and rotor 
speed. In these equations, rotor flux linkage calculated using the 
inverse value of rotor time constant. Therefore the error between 
the actual value of rotor time constant and the assuming value, 
leads to error in the rotor flux linkage calculation. The error 
between rotor flux linkages based on (11) and (12) and based on 
(15) and (16) can be used to calculate the actual value of the 
rotor time constant. 

 
3. SDBP Algorithm 

 
The back propagation algorithm uses the mean square error 

as it is performance index. The algorithm is provided with a set 
of examples of proper network behavior [19]: 

},{,..},.,{},,{ 332211 tptptp    (17) 
Where p is an input to the network, and t is the corresponding 

target output. 
The algorithm should adjust the network parameters in order 

to minimize the mean square error [19]. 
)]()[(][)( atatEeeExF TT −−==    (18) 

Where "t" is the target vector and "a" is the output vector. 
The steepest descent back propagation algorithm (SDBP) for the 
approximate mean square error is [19]: 
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Where α is the learning rate, w is weight, b is bias, i is 
number of the neuron, j is number of the input and m is number 
of the layer and m

ib is the bias. 
 

4. RLS Algorithm 
 
The model output can be written as:  

           nnXXXY θθθ +++= ...2211                   (21) 
Gradient of loss function with respect to the parameter vector 

θ̂ has to be equal to zero.This leads to the least square estimate 
[23]: 

YXXX TT
LS

1)(ˆ −=θ  ………….(22) 
When the LS method is required to run online in real time, a 
recursive least square (RLS), calculates a new update for 
parameter vector, each time new data comes in. The RLS update 
is [23]: 
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)1()1()()1( 11 +++=+ −− txtxtPtP T                (24) 
 

5. Rotor Time Constant Estimation using SDBP and 
RLS Algorithms 

 
With respect to equations (15) and (16), neural network 

model of the induction motor is confirmed. The sample-data 
model of equations (15) and (16), can be written as following. 
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Where sT is the sampling period. 
5.1. SDBP Estimation 

Equations (25) and (26) represents matrix form of (15) and 
(16) [17]. 
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Equation (25) represents a single neuron neural network 
model, where 1W , 2W  and 3W  are the weights of the inputs 
and 1X , 2X , 3X  are the inputs of the neuron and a linear 
function is the transfer function of the neuron. The single neuron 
neural network is shown in Fig. 1. 

The error between the actual rotor flux linkage and output of 
single neuron neural network, is given by: 

)()()( ' kkTk s
rψε −=    (26) 

Where T is the vector of rotor flux linkage. The performance 
index is described as following. 
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2W  is known and 1W  can be described by using induction 
motor parameters and also 3W . So 3W needs to be updated and 
then 1W can be computed. 

The weight variation based on SDBP are presented by 
equation (28). 
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Where α is the learning rate and γ is the momentum 
coefficient  

Actual value of the rotor time constant can be found out form 
equation (30). 
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Fig. 1. Single neuron neural network model  
 

5.2. RLS Estimation 
Equations (23) and (24), can be written as following. 
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Where sT is the sampling period and: 
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Coefficients matrix updated based on RLS by equation (10). 
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Where θ̂  is the estimated matrix. 2θ  is known and 1θ  can 
be described by using induction motor parameters and also 3θ . 
Actual value of the rotor time constant can be found out from 
(12). 
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6. Simulation Results 

 
A three-phase induction motor with a rotor flux oriented 

vector controller was used for simulations. The parameters of 
the motor are presented in table (1). 

 
6.1. SDBP Algorithm 

The actual value and the estimated value of the rotor time 
constant using SDBP are shown in Fig. 2. Also the estimation 
error is shown in Fig. 3. The maximum value of the error is 
1.7% and the neural network is stable. In The next step, learning 
rate is increased. Results are shown Fig. 4 and Fig. 5. The 
maximum error is 0.8% and the neural network is stable. 
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Fig. 2. Actual value of the rotor time constant and estimated 
value using SDBP 

 

 
 

Fig. 3. Rotor time constant estimation error using SDBP 
 

 
 

Fig. 4. Actual value of the rotor time constant and estimated 
value using SDBP 

 

 
 

Fig. 5. Rotor time constant estimation error using SDBP 
 

In The third step, learning rate is increased again. Results are 
shown Fig. 6 and Fig. 7. In these figures, the maximum error is 
1%. This means that the network is over trained and the learning 
rate should not to be increased. 

 
 

Fig. 6. Actual value of the rotor time constant and estimated 
value using SDBP 

 

 
 

Fig. 7. Rotor time constant estimation error using SDBP 
 

Table 1. Induction Motor Parameters 

14.92 KW, 220 V, 3 phase, 4 pole, 
60Hz 

0.1062 � sR  

0.0764 � rR  

0.5689 mH lrL  

0.5689 mH lsL  

15.47 mH mL  
2.8 Kgm2 J  

 
6.2. RLS Algorithm 

Results of the rotor time constant estimation using RLS are 
shown in Fig. 8 and Fig. 9. The maximum value of the error is 
1.5% in steady state. As shown in these figures, the estimation 
error in the beginning of the estimation is high, because of 
matrix P(0). The initial value of the matrix P must be in rang of 

210  up to 310  and this leads to consuming time. 
 

7. Conclusion 
 
Increasing rotor time constant estimation accuracy is an 

important subject to induction motor indirect vector controlled 
drive. In this paper, two new approaches for estimation of 
induction motor rotor time constant, were proposed and 
compared. In these methods SDBP and RLS algorithms are 
used. Using SDBP and RLS caused to reduce estimation error 
and SDBP improve transient state of the estimation, because of 
the initial value of the matrix P in RLS. 

Important advantage of proposed SDBP and RLS estimation 
methods, that they are online accurate methods for different 
conditions. 
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Fig. 8. Actual value of the rotor time constant and estimated 
value using RLS 

 

 
 

Fig. 9. Rotor time constant estimation error using RLS 
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