
A HiL Test Bench for Verification and Validation Purposes of Model-Based

Developed Applications Using Simulink
®

and OPC DA Technology

W.Chaaban
1
, M. Schwarz

1
, B. Batchuluun

1
, H. Sheng

1
and J. Börcsök

1

1
University of Kassel, Willhelmshöher Allee 73, Germany

walid.chaaban@uni-kassel.de, m.schwarz @uni-kassel.de,

batsuren@uni-kassel.de, hsheng@uni-kassel.de

Abstract

This paper deals with the development procedures of a HiL

(Hardware-in-the-Loop) test bench for verification and

validation purposes of embedded application software

developed using MBD (Model Based Design) engineering

methodology. The testing environment have been mainly

developed for PLC (Programmable Logic Controller)

applications using Matlab®/Simulink® as a simulation

environment and the OPC DA (OLE for Process Control

Data Access) specification as communication interface for

data interchange with the OPC compliant (set as working

condition) target hardware. The main focus of this work was

to offer a tool or an instrument to end user or test engineer

that helps testing auto- generated embedded software while

running on target system and making decision and

statements about correct functionality and performance with

regard to main requirements in order to validate the

intended mission of the application aimed to reach.

1. Introduction

One of the big challenges of embedded application industries

nowadays is to launch superior quality products at lower cost for

sale on the market as fast as possible or in a short TTM. TTM

stands for Time-to-Market and represents the length of time it

takes since the idea of a product has been conceived until the

product has been available for sale. This period of time

represents a crucial factor and plays an important role in

industries due to the big competition between the market leaders

and taking into account that products are outmoded quickly and

have to be updated and extended as fast as possible in order to

meet market needs. The more complex and various are the

embedded activities intended to achieve, the more complex, time

consuming and error- prone is the belonging hand-written

embedded software where was the necessity to invent a new

engineering methodology to overcome all facing problems and

obstacles. MBD (Model Based Design) is the new trend and has

been increasingly used and gaining popularity in the last years in

many industrial sectors (such as aircraft, automation and

automotive applications etc…), due to the big set of benefits and

advantages it provides for both sides manufacturers and end

consumers. Some of the benefits are listed in the following [1]:

Reduced time to market (faster development)

Detection and elimination of software bugs and errors in

early development stages (quality improvement)

Producing superior quality products at lower cost

Flexibility concerning updates and last minute changes

The model-based design paradigm is significantly different

from conventional design methodology. The central component

or starting point of a model based developed application is a

system model (simulation model), where designers or

developers model the control algorithm or functional

characteristics of the intended application as interconnected

function blocks provided by the library of the used modelling

tool, e.g. Simulink® (graphical programming language from

MathWorks®). After model development, simulation in the

virtual environment (MiL: Model-in-the-Loop) shows whether

the model works correctly with regard to given requirment

specifications. In case of requirements’ fullfillment an

automated code generation according to the hardware target can

be started in order to implement the modelled application in an

embedded code for hardware deployment, e.g. embedded C

code, using commercial autocoders (automatic code generator),

e.g. RTW Embedded Coder (RTW stands Real Time Workshop)

from MathWorks®. This feature lying in the ability of

automatically generating large amounts of code lines at one

button touch and in a very small time intervall appears to be one

of the main reasons for MBD’s growth in popularity. This step

reduces radically time taken for code implementation in case of

hand-written code used in tradional design methodology and

avoids manually coded errors and bugs. The next step consists

of software testing, and verification which is not sufficiant for

validation since the developed software will be deployed on a

target hardware. This is why a Hardware-in-the-Loop (shortened

HiL) simulation has to be performed in which time behaviour

and hardware influences on the developed software can be tested

before any integration or system test are performed. The

different steps of the life cycle of the MBD engineering

methodology is represented in the V- Diagramm depicted in

Fig. 1 [2].

Modeling and

Simulation

Rapid Prototyping

Auto-Code Generation

HiL Test

Integration and Test

Fig. 1. MBD life cycle (V - Diagramm)

ELECO 2011 7th International Conference on Electrical and Electronics Engineering, 1-4 December, Bursa, TURKEY

46

This paper is a demonstration on how a HiL test environment

has been developed for validation purposes using Simulink as a

development and simulation environment and OPC DA

technology as a communication interface for interaction and

data interchange with OPC DA compliant target hardware

(mainly PLC). Development and tests have been made using

HIMA PLCs product family (new generation of HIMatrix and

the HIMax systems) as hardware, which can be operated and

programmed with the SILworX PADT (Programming and

Debugging Tool – Product of the company HIMA). The rest of

the paper is structured as follows. Section 2 deals with the

different testing approaches accompanied with the different

development phases of the MBD life cycle. Section 3 gives a

short overview to the development environment and the

different software interfaces and tools used during development.

Section 4 deals with the focus of this work and the building

procedure of the HiL test bench. In section 5 performance

analysis and evaluation of the tool are discussed by means of a

simple example. Concluding remarks about the tool are

explained in part 6 followed by future works in part 7.

2. Testing Approaches

For safety improvement and quality assurance embedded

software manufactures have placed over the last years their

major responsibility and work on software verification and

testing. The main aim of testing is to get an end product that

fulfils requirements specifications and satisfies a minimum level

of reliability required. A further purpose is to minimize risk of

failure since error free systems do not exist in reality [3] [4] and

to avoid system crashes and undefined system states that may

lead to hazardous situations in case a safety related mission has

been dedicated to the control application.

As mentioned earlier one of the big challenges of MBD of

embedded control and safety applications is to develop reliable

and healthy performing software with minimal risk of failure or

software that is able to lead the system into a safe or defined

state in case the SIS (Safety Instrumented System) is intended to

perform a safety critical function. MBD is well suited for this

kind of development since each essential step of its development

life cycle is armed with its own testing strategy. 3 different basic

test disciplines are performed throughout the different phases of

MBD life cycle. Those different testing approaches are listed

below:

Model-in-the-Loop (MiL)

Software-in-the-Loop (SiL) and finally

Hardware-in-the-Loop (HiL).

Those 3 test approaches are explained shortly in the following.

MiL Testing: This testing step is used for validation at

modelling stage, in order to test the function of the designed

control application. During MiL test, the behaviour of the

intended function or activity which is later to implement in

embedded C or C++ code is simulated as a model in a virtual

environment. The model represents a rapid visualization of a

control algorithm designed in a graphical development language

as a set of interconnected blocks and is a kind of a simplified

and an easy to process representation of the real environment,

which allows validating the functionality of the intended activity

in term of compliance with requirements and to find

specification mistakes in early development phases [5].

SiL Testing: This is an intermediate testing approach

performed between the MiL and HiL after code implementation

from the designed control model. This category intends to test

the behavior of the auto-generated software before integration

into any target hardware or real- time hardware simulation. This

testing approach is an important step but does not completely

replace the HiL testing, because the generated or written code

may not (for target flexibility reasons) contain yet any code

describing the integrating control unit or processor and many

previous experiences have shown that simulation and reality

always differ [5].

HiL Testing: This testing strategy represents a real-time

hardware simulation and the final product test (i.e. it requires

the use of hardware targets for execution). This category of test

intends to check if the software products still fulfil/meet

objectives and if the main functionality keeps remaining while

performing on the specific target hardware. One more aim of the

HiL Test is to test the interaction between the auto-generated

software and the target hardware in order to evaluate product’s

performance (check hardware influences on software), which

represents the main objective of model-based development.

One additional important task during the testing phase is the

choose of the test cases simulated during test. Those test cases

have to be chosen in a comprehensively manner and required a

deep understanding of the tested application. If the test cases on

which the simulation is based do not adequately address or take

into account the potential error conditions of the design, security

and safety leak may stay undiscovered and the developer may

well end up with a false sense of security. Care should therefore

be taken to ensure that all of the problem space is adequately

captured and understood during the modeling process in order to

reach the highest or optimal level of test coverage with

maximum accuracy [6].

3. Development Environment

This section deals with the environment, in which the HiL

test tool has been built and the different software tools and

interfaces, that have been used for development. During the

development phase of the HiL test environment implemented in

this work the following 2 MathWorks® products have been

mainly used: Simulink® as a graphical modelling environment

using function blocks from own library and the OPC Toolbox™

for the communication management with the target OPC

compliant PLC hardware. Additional products like the

SILworX
®

Programming and Debugging Tool (PADT) and X-

OPC DA Server from the HIMA [7] have been used. More

information about these products is given in the following

subsections.

3.1. Simulink
®

and OPC Toolbox
™

Matlab®/Simulink® from MathWorks represents one of the

most widely used development tool at research institutes and

universities in model-based design, simulation and auto-code

generation of control algorithms due to the big set of various

toolboxes and facilities it provides to the developers.

ELECO 2011 7th International Conference on Electrical and Electronics Engineering, 1-4 December, Bursa, TURKEY

47

Simulink®: is a commercial modelling tool which popularity

has been increasing in the last few years among embedded

software developer using MBD methodology. Simulink®

represents an environment for design and multidomain

simulation of Model-Based Design for dynamic and embedded

systems. It provides an interactive graphical environment

(graphical block diagramming tool) and a customizable set of

block libraries for design, simulation, implementation and

testing of control algorithm and many other applications areas

[8].

OPC Toolbox™: provides in the context of this work a

connection to OPC DA (OLE for Process Control Data Access)

servers and acts therefore as an OPC DA client. OPC DA is a

Microsoft COM/DCOM (Distributed Component Object Model)

based communication standard allowing users to perform read

and write access (enterprise management level) to live data and

processes running on any target device that conforms to the

OPC DA specification, e.g. Distributed Control Systems (DCSs)

and PLCs [9].

3.2. SILworX
®
– PADT and X- OPC DA Server

SILworX® from the HIMA (a company which is concerned

with safety- related solutions) is a new commercial, easy-to-use,

fully integrated configuration, Programming and Debugging

Tool (PADT). SILworX® as engineering tool is IEC 61131-3

(software part) compliant, supports all functions and variable

types for safety- related programming according to the

prementioned standard and includes a graphical user interface

for flexible drag and drop programming of PLC applications

(mainly the new HIMax and the new HIMatrix generations)

using Function Block Diagrams (FBD) [10].

X-OPC is also a HIMA product and represents an OPC DA

specification server which performs write and read access on the

address space of the HIMA OPC compliant new generation of

PLCs (HIMax and new HIMatrix generations). The

configuration and parameter setting of this server including

defining accessible items is performed within the context of

SILworX®.

4. HiL Test Bench- Idea and Building Procedures

4.1. Main Idea behind this Work

In the scope of a project that intends to develop a tool that

translates Simulink® models in PLC projects as C- Interface

Funktion (CIF Blocks) including steps needed for verification

and validation purposes and the appropriate testing disciplines,

the necessity of an instrument that performs HiL simulation for

applications developed for PLC targets has arisen. More

concretely, the project intends to automatically generate

customized C- code from Models developed in Simulink® for

the HIMA PLC series (HIMax, HIMatrix) using RTW

Embedded Coder, in order to enable the development of control

algorithms (e.g. a PID controller), since realizing this kind of

complex tasks with the standardized IEC 61131-3 Function

Block Diagram (FBD) PLC programming language is limited,

due to the poor set of blocks provided by the library defined in

this standard.

The tool described in the context of this work is concerned

with performing real-time Hardware-in-the-Loop simulation and

defines one of the last steps of the MBD life cycle. This step

consists of testing and validating the functionality of the auto-

generated code during real-time deployment on a HIMA PLC

system.

Since Simulink® has been used as engineering tool in

creating the converting instrument and the starting point being a

Simulink® model, therefore came the idea to create the HiL

testing environment using the same tool. One more convincing

point in favour of using Simulink® was the high degree of

automation one can reach through its usage. A further

challenging task consisted of how to establish a connection with

the hardware component since HiL testing is mainly based on

interaction with hardware. On that basis the idea with the OPC

communication interface was born since almost all HIMA PLCs

products are OPC compliant and Simulink® supports this

communication standard through its promising OPC Toolbox™.

4.2. HiL Test Bench – Building Procedure

A. Simulink
®

Side

As mentioned previously the HiL test bench is a Simulink®

model, which will be generated automatically at the request of

the user in one button touch from the main designed Simulink®

application intended to be tested.

The auto created HiL test model consists mainly of a so

called Level-2 Matlab S-Function block, which becomes the

Name HIL Test and will be attached to an m- function that

manages that connects to the preconfigured OPC server and

manages data interchange. This function block performs during

setup or initialization the following steps

Determining the number of inputs in the main

application’s model, in order to add the same number of

input pins to the Level-2 Matlab S-Function

Determining the number of outputs in the main

application’s model, in order to add the same number of

output pins to the Level-2 Matlab S-Function

After performing the above mentioned steps, so called

Repeating sequence stair blocks with number of inputs are

going to be added into the HiL Test model. The name and data

type of each block is going to be changed according to the name

and data type of the input it has been added for and it will be

afterwards connected to the appropriate input pin of the

previously initialized Level-2 Matlab S-Function. It is also

important to notice that this function block is executed once

every sample time. A general arrangement drawing that

describes the overall building process of the HiL test

environment is depicted in Fig. 2.

A Repeating Sequence Stair block outputs or repeats,

depending on the total set simulation time of the model, a stair

sequence that the user specifies in the Vector of output values

parameter. In this tool the Vector of output values are going to

be fed automatically test vectors from a test matrix that has been

generated previously by the user and saved into the working

directory.

ELECO 2011 7th International Conference on Electrical and Electronics Engineering, 1-4 December, Bursa, TURKEY

48

Level-2 Matlab

S-Function

manages communication
with X-OPC server

performs read and write
access to OPC items

Forwards test cases as
inputs and read results of

outputs

n Executed once every
simulation sample time

n Includes m-code that:

…..

…..

…..

…..

Matlab
outports

Repeating
Sequence

Stair - Blocks

Where test
cases are

downloaded

Save Simulation
results into a

matrix for later
documentation
and validation

Level-2 Matlab

S-Function

manages communication
with X-OPC server

performs read and write
access to OPC items

Forwards test cases as
inputs and read results of

outputs

n Executed once every
simulation sample time

n Includes m-code that:

…..

…..

…..

…..

…..

…..

…..

…..

Matlab
outports

Repeating
Sequence

Stair - Blocks

Where test
cases are

downloaded

Save Simulation
results into a

matrix for later
documentation
and validation

Fig. 2. Overall building process of the HiL test environment

The sample time of the Repeating sequence stair is set to

the same sample time of the model in such a way that each

sample time new test iteration is fed into the test model and

forwarded to the X-OPC server, which is assumed to be

configured before.

After adding and connecting the Repeating sequence stair

blocks with the appropriate input pins of the Level Matlab S-

Function, outport blocks are going to be added to the test model

and their names and data types will be changed according to the

outputs in the main developed model. Finally each added

outport block is going to be connected automatically with the

appropriate output pins of the Level-2 Matlab S-Function

block. It is important to remind once again that all previously

mentioned steps are really performed automatically. The user

only has to start the HiL test in order to run all these steps. An

example of an automatically generated HiL test environment

from a Simulink® Model consisting of 4 inputs and 2 outputs is

shown in Fig. 3.

B. SILworX
®

Side

After a specific application has been implemented in

embedded C- code using the automatic code generator a

function block (so called CIF- C Interface Function block type)

has to be created manually in the SILworX environment. The

input and output pins of this block will be imported from a file,

which is supposed to be generated automatically during code

model conversion. Furthermore this block will be attached to the

auto-generated code also through its import option.

It should be also noticed that during code generation a file

with global variables will be generated. The global variables

become the same names as the inport and outport blocks of the

main model and two additional control global variables are

declared: EnableIn and EnableOut. These global variables are

used for data interchange with the OPC DA server.

Auto-created Simulink
HIL testing model

Simulink designed
model

Fig. 3. Auto generation of Simulink® HiL test bench model from

original designed Simulink® model

The EnableOut variable is not that important, since the

EnableIn variable is controlled from the software that has been

attached to the Level-2 Matlab S-Function block and is used as

a control signal to activate and disable the CIF block. The

EnableIn and EnableOut will be connected to the EN input pin

and ENO output pin, which appear automatically when the user

chooses the option Show EN/ENO from the context menu of

the CIF function block in the program. The HiL test

environment in SILworX® for the upper model is depicted in

Fig. 4.

Fig. 4. HiL test model representation on SILworX® side

C. How does it function

After having finished configuring an X-OPC DA interface

for the built SILworX® test program, code will be generated on

SILworX® for both the program and the created OPC interface.

The code generated from the program is uploaded on the PLC

and the one generated from the configured OPC interface is read

in the X-OPC server. Afterwards both applications are started.

When those steps are achieved, hardware simulation can be

started from the HiL test model generated in Simulink®. To get a

better overview how the data transfer of the whole arrangement

works, take a look at Fig. 5.

During simulation or runtime the Level-2 Matlab S-

Function implemented in the Simulink® test model executes

exactly once every tact or sample time. Within one execution the

following steps are sequentially performed:

The values of the outputs (SILworX® model) or the

values of the OPC readable items determined by the server

through read access will be given to the approriate outputs in

the Simulink® model and saved into a matrix for later

documentation and validation purposes.

After finishing the read process or determining the values

of outputs a FALSE value is going to be written into the

EnableIn control signal, in order to deactivate the code

execution and to begin a new write process into the

SILworX® model inputs. Each new tact, the inputs are

updated and a new test value lies at each input, which is

going to be written to the appropriate item on the OPC server

and forwarded to the hardware, i.e. a new test iteration is sent

to the hardware.

After writing all model inputs values into the appropriate

OPC writable items, the EnableIn control signal is

immediately set to TRUE per software, in such a way that the

CIF – funktion block is enabled and code is executed once

with the forwarded test values.

ELECO 2011 7th International Conference on Electrical and Electronics Engineering, 1-4 December, Bursa, TURKEY

49

As mentioned before every new sample time begins with a

read process followed by a write access to the OPC writable

items. Since at the beginning of the simulation no data are

needed to be read at the outputs because no test values have

been written to the inputs yet, solely a write access will be

performed in the first tact and the appropriate execution results

will be determined or read during the following sample time.

This is the reason why the total simulation time has been

extended for one additional sample time, in which the results of

the last write process will be read. This makes the total

simulation time dependent from the number of iterations (one

sample time per iteration) intended to test plus one sample time

for the last read access.

The test results or the values of the outputs obtained for each

test iteration will be saved each sample time into a matrix that

will be used at the end of the test to compare results with the

results of the previously supposed successfully performed MiL

test and in the test documentation as described in the next

session.

5. HIL Test Tool - Performance Evaluation

In this section, a performance evaluation of the tool is made

by means of a simple example consisting of an AND- and XOR-

block (see Fig. 3). The Simulink® model consists of 4 inputs

with Boolean data types and 2 Boolean outputs and has a sample

time of 0.2. That means in this case a total of total 24 =16

different test iterations are built and saved into a test matrix. It is

also important to notice at this point that a special tool for

automatic test case generation has been developed as a separated

instrument, where different methods are followed.

After building the HiL test environments on both sides

Simulink® and SILworX® and configuring the required OPC

interface using the HIMA X-OPC server the simulation can be

started.

If the user wants to show or follow the events taking place on

the target hardware during runtime, the user has to switch to the

online simulation mode in SILworX®. Some screenshots have

been taken during the online Simulation of the model and are

shown in Fig.6. The red colored lines represent the Boolean

state TRUE while the blue ones represent the Boolean state

FALSE.

As mentioned previously the inputs become each sample

time new test values, which will be written to writable OPC

items and forwarded to the appropriate global input variable on

SILworX® side through accessing the address space of the PLC.

After that the EnableIn signal is set to TRUE for code

execution.

Every time the HiL Simulation is achieved, an html test

report will be automatically generated and saved in the current

Matlab® working directory. This report includes the results of

the previously achieved MiL test and the results of the HiL Test

that will be compared. It is also important to notice that both

tests have been performed with the same test cases and if both

test results match or the difference between the MiL and the HiL

values for the same test vector lie within a predefined tolerance

limit, the HiL test is then deemed to be achieved successfully

and the converted code seems to be working as expected during

real time HiL simulation.

In the documentation all passed comparisons, i.e. identical

MiL and HiL test results for the same test vector are marked

with symbols while failed tests are marked with symbols.

Fig. 7 shows a part of the auto generated html test report for the

treated example.

The test report shows that all tests are passed and no failed

tests have been recognized and hence the test has been

successfully accomplished. Furthermore the test was well

performing and has been achieved in a very short time despite

the small delays, which have been inserted between the

individual tests in order to allow the user to see and follow the

events taking place on hardware side when switching into online

mode, because the process is really running very fast.

Test (0 0 0 1: 0 1)

Test (1 1 0 1: 1 1)

Test (1 1 1 1: 1 0)

Fig. 6. Some snapshots of the online simulation mode while HiL

test running

Target Hardware or PLC

Software controlled Enable Signal

OPC DA Server

Read Access

HiL Test- Environment

Matlab/Simulink

OPC Toolbox

HiL Test- Environment

OPC DA Server

Write Access

Matlab/Simulink

OPC Toolbox Target Hardware or PLC

Software controlled Enable Signal

OPC DA Server

Read Access

HiL Test- Environment

Matlab/Simulink

OPC Toolbox
OPC DA ServerOPC DA Server

Read Access

HiL Test- Environment

Matlab/Simulink

OPC Toolbox

Matlab/Simulink

OPC Toolbox

HiL Test- Environment

OPC DA Server

Write Access

Matlab/Simulink

OPC Toolbox
OPC DA ServerOPC DA Server

Write Access

Matlab/Simulink

OPC Toolbox

Matlab/Simulink

OPC Toolbox

Fig. 5. Data interchange between the Simulink HiL test envionment and target hardware

ELECO 2011 7th International Conference on Electrical and Electronics Engineering, 1-4 December, Bursa, TURKEY

50

Fig. 7. Automatically generated html evaluation report

containing both MiL and HiL results

For more performance, behaviour and strain test, complex

models with digital filters have been tried using the tool. Some

hundreds and sometimes even thousands of test cases have been

generated for this purpose. The tool was well performing and

showed a stable behaviour but as expected the test was taking

longer due to the numerous numbers of tests generated.

6. Conclusion

The HiL test bench discussed in this work represents a very

effective and time saving environment for testing and simulating

the functionality and behaviour of auto-generated software in

runtime mode, which has to be performed as one of the last steps

within the life cycle of a MBD project in order to reach a

validation in a very short time and therefore to obtain a product

in an acceptable TTM interval.

The initial purpose of the tool was to offer to development

engineers in model based software development field an easy to

use, automated HiL test instrument for validation intentions and

particularly for devices and target hardware that conform to the

OPC DA communication standard (DCS, PLC) using the

Matlab®/Simulink® engineering tool as development

environment. The tool delivered a very good performance even

with a huge number of test cases and was performing very fast

and in a stable manner.

7. Future Works

In the near future we will set the major focus of work on

enhancing and increasing the degree of automation of the tool as

much as possible especially on the side of SILworX® because in

the recent version the biggest part of configurations and actions

on SILworX® side are still performed manually contrary to the

Simulink® side where user only need to touch one button, so

that almost all activities and building procedures are achieved

automatically and a high degree of automation is reached.

8. References

[1] Achraf Saad, Keshac Dahal, Muhammad Sarfraz,

Raijkumar Roy, "Soft Computing in industrial

Applications", Recent Trends, 2007, Springer Verlag.

[2] http://www.srmtech.com/model-based-development/model-

based-development.htm

[3] B. Hailpern, P. Santhanam, "Software debugging, testing,

and verification", IBM SYSTEMS JOURNAL, VOL 41,

NO 1, 2002.

[4] J. Börcsök, "Electronic safety concepts, models and

calculations", Hüthig Verlag Heidelberg.

[5] Günter Hommel and Sheng Huanye(Eds.), "Embedded

Systems Modeling, Technology, and Applications",

Proceedings of the 7th International Workshop held at

Technische Universität Berlin, June 26/27, 2006, Springer

Verlag.

[6] Devesh Bhatt, Brendan Hall, Samar Dajani-Brown, Steve

Hickman, Michael Paulitsch, "Model-Based Development

and the Implications to Design Assurance and

Certification", Honeywell International, Minneapolis,

Minnesota, IEEE 2005

[7] http://www.hima.com

[8] http://www.mathworks.com/products/simulink/?BB=1

[9] http://www.mathworks.com/products/opc/

[10] http://www.hima.com/Products/SILworX_default.php

ELECO 2011 7th International Conference on Electrical and Electronics Engineering, 1-4 December, Bursa, TURKEY

51

